Hybrid Metaheuristic Optimization and Deep Learning Models for Accurate Skin Lesion Detection and Classification
-
https://doi.org/10.14419/gjm5eh06
Received date: May 28, 2025
Accepted date: June 27, 2025
Published date: July 8, 2025
-
Skin Lesion Segmentation; HAM10000 Dataset; Graph Cut Segmentation (GCS); Fuzzy C-Means Clustering (FCM); Feature Selection; Particle Swarm Optimization Algorithm (PSOA);Sparrow Search Algorithm (SSA);Vision Transformer (ViT). -
Abstract
Skin cancer detection through medical imaging plays a crucial role in early diagnosis and treatment. In this study, we focus on segmenting lesions from the HAM10000 dataset using region-based techniques such as Graph Cut Segmentation (GCS) and Fuzzy C-means clustering (FCM). Accurate segmentation is essential for extracting meaningful features, which directly impact the classification performance. To enhance feature selection, we integrate two metaheuristic optimization algorithms—Particle Swarm Optimization Algorithm (PSOA) and Sparrow Search Algorithm (SSA). Additionally, propose a hybrid optimization model that combines these techniques to improve feature selection efficiency and enhance the overall classification process. For classification, we compare the performance of a Vision Transformer (ViT) with traditional Convolutional Neural Networks (CNNs), specifically ResNet and EfficientNet, for binary classification of skin lesions. Transformers have demonstrated significant potential in vision tasks due to their self-attention mechanism, which captures long-range dependencies in images. The proposed methodology is evaluated based on segmentation accuracy, feature selection efficiency, and classification performance. Then assess multiple evaluation metrics to compare the effectiveness of each technique, ensuring a comprehensive analysis of their impact. The study aims to provide valuable insights into how different segmentation, optimization, and classification methods contribute to improved skin lesion analysis.
-
References
- Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Deep learning for skin lesion classification: A com-prehensive review. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056.
- Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2022). Vision transformers for medical image analysis: A survey. Medical Image Analysis, 75, 102317.
- Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Explainable AI in healthcare: Interpreting deep learning models for clinical decision-making. Nature Machine Intelligence, 1(1), 53-61.
- Sheller, M. J., Reina, G. A., Edwards, B., Martin, J., & Bakas, S. (2020). Federated learning in medical applications: Challenges and future direc-tions. arXiv preprint arXiv:1912.04977.
- Liu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P., & Norcliffe-Brown, W. (2020). Enhancing dermatological disease classification with multi-modal data fusion. Journal of Medical Imaging, 7(1), 014001.
- Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., & van der Laak, J. A. (2017). Automated disease detection using convolutional neural networks: A comparative study. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005.
- Shorten, C., & Khoshgoftaar, T. M. (2019). Improving medical image classification with data augmentation and transfer learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0.
- Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Applications of Grad-CAM in medical image interpretation: A review. Proceedings of the IEEE International Conference on Computer Vision, 618-626. https://doi.org/10.1109/ICCV.2017.74.
- Tschandl, P., Rosendahl, C., & Kittler, H. (2020). Deep learning in dermatology: Current trends, challenges, and future prospects. The Lancet Digi-tal Health, 2(7), e368-e375.
- Topol, E. J. (2019). Towards deployable AI in medical diagnosis: Bridging the gap between research and clinical practice. Nature Medicine, 25(1), 44-56.
- Manole, I., Butacu, A.-I., Bejan, R. N., & Tiplica, G.-S. (2024). Enhancing Dermatological Diagnostics with EfficientNet: A Deep Learning Ap-proach. Bioengineering, 11(8), 810. https://doi.org/10.3390/bioengineering11080810.
- Khadija Shahzad, Muhammad Wasim, Ivan Miguel Pires, Nuno M. Garcia,Multi- classification of skin lesions using a deep learning-based convolu-tional neural network, Procedia Computer Science, Volume 241,2024. https://doi.org/10.1016/j.procs.2024.08.085.
- Vipin Venugopal, Navin Infant Raj, Malaya Kumar Nath, Norton Stephen,A deep neural network using modified EfficientNet for skin cancer de-tection in dermoscopic images, Decision Analytics Journal, Volume 8,2023,100278,ISSN 2772-6622 https://doi.org/10.1016/j.dajour.2023.100278.
- Viknesh, C. K., Kumar, P. N., Seetharaman, R., & Anitha, D. (2023). Detection and Classification of Melanoma Skin Cancer Using Image Pro-cessing Technique. Diagnostics, 13(21), 3313. https://doi.org/10.3390/diagnostics13213313.
- Aliyu Tetengi Ibrahim, Mohammed Abdullahi, Armand Florentin Donfack Kana, Mohammed Tukur Mohammed, Ibrahim Hayatu Hassan, Categor-ical classification of skin cancer using a weighted ensemble of transfer learning with test time augmentation, Data Science and Management,2024. https://doi.org/10.1016/j.dsm.2024.10.002.
- Bello, A., Ng, S.-C., & Leung, M.-F. (2024). Skin Cancer Classification Using Fine-Tuned Transfer Learning of DENSENET-121. Applied Scienc-es, 14(17), 7707. https://doi.org/10.3390/app14177707.
- Azeem, M., Kiani, K., Mansouri, T., & Topping, N. (2024). SkinLesNet: Classification of Skin Lesions and Detection of Melanoma Cancer Using a Novel Multi-Layer Deep Convolutional Neural Network. Cancers, 16(1), 108. https://doi.org/10.3390/cancers16010108.
- Vardasca, R., Mendes, J. G., & Magalhaes, C. (2024). Skin Cancer Image Classification Using Artificial Intelligence Strategies: A Systematic Re-view. Journal of Imaging, 10(11), 265. https://doi.org/10.3390/jimaging10110265.
- Tahir, M., Naeem, A., Malik, H., Tanveer, J., Naqvi, R. A., & Lee, S.-W. (2023). DSCC_Net: Multi-Classification Deep Learning Models for Diag-nosing of Skin Cancer Using Dermoscopic Images. Cancers, 15(7), 2179. https://doi.org/10.3390/cancers15072179.
- Gouda, W., Sama, N. U., Al-Waakid, G., Humayun, M., & Jhanjhi, N. Z. (2022). Detection of Skin Cancer Based on Skin Lesion Images Using Deep Learning. Healthcare, 10(7), 1183. https://doi.org/10.3390/healthcare10071183.
- Kavitha, M. (2023). Beamforming techniques for optimizing massive MIMO and spatial multiplexing. National Journal of RF Engineering and Wireless Communication, 1(1), 30-38.
- ASIF, M., BARNABA, M., RAJENDRA BABU, K., OM PRAKASH, P., & KHAMURUDDEEN, S. K. (2021). Detection and tracking of theft vehicle. International Journal of Communication and Computer Technologies, 9(2), 6-11. https://doi.org/10.31838/ijccts/09.02.02.
- Kulkarni, S., & Ravi, J. N. (2024). Smart Ways to Catch the Abutment DRCs at IP Level. Journal of VLSI Circuits and Systems, 6(1), 51–54. https://doi.org/10.31838/jvcs/06.01.08.
-
Downloads
-
How to Cite
Vijayakumari, G. ., Rajasekaran, U. . ., Prakash , M. ., Jayabratha , S. ., Viswanathan , D. ., Velmurugan , T. ., Gayathri , J. C. ., Karthieswari , R. ., Sathishkumar , M. , & Shameena, W. . (2025). Hybrid Metaheuristic Optimization and Deep Learning Models for Accurate Skin Lesion Detection and Classification. International Journal of Basic and Applied Sciences, 14(SI-1), 251-257. https://doi.org/10.14419/gjm5eh06
