Optimized Type - 3 Fuzzy Logic for Robust Learning Algorithm ‎in OCR Recognition

  • Authors

    • P. Sweetlin Research Scholar, Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, ‎Chennai, Tamil Nadu, India
    • G. Jayalalitha Professor, Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil ‎Nadu, India
    https://doi.org/10.14419/608p4p44

    Received date: May 2, 2025

    Accepted date: May 27, 2025

    Published date: July 8, 2025

  • OCR; Type-3 Fuzzy Logic; Robust Learning Algorithm; Educational System; Recognition Accuracy; Optimization and Noise Handling
  • Abstract

    Optimized Type-3 Fuzzy logic system integrated with robust learning algorithm and enhanced with OCR performances. This approach is ‎specifically within the context of educational applications. OCR played an important role in converting printed educational materials into ‎digital formats. The reason for selecting fuzzy logic in the education sector is not only learning for the decision-making process. Fuzzy logic ‎is a more realistic and flexible evaluation. Results as more consistent, objectives. Type-1 fuzzy logic systems have single-valued ‎membership functions, they only handle basic-level operations. Type-2 fuzzy logic is computationally more complex with requires larger ‎resources to process in educational applications. To overcome this issue Optimized Type-3 Fuzzy logic combined the type-1 and type-2 ‎fuzzy logic systems with the terms to improve the adaptability and performance. Introducing the optimized Type-3 fuzzy logic algorithm ‎used PSO noted as PSO-OT3FL-RLA, helps to improve the accurateness and strength of the OCR system. This system also incorporates ‎uncertainty in the recognition process and ensures adaptable recognition outcomes. The proposed model is an advanced learning algorithm ‎integrated with fuzzy logic that effectively handles noisy input data. PSO technique ensures efficient exploration and maintains the balance ‎between the quality of the result and computational efficiency. Utilize the proposed approach performed through the traditional OCR ‎methods in terms of accuracy and computational error rate. After evaluating the overall performance of the proposed model, we provide a ‎result of 94.67%. It provides a promising solution for OCR-based applications in educational sectors‎.

  • References

    1. Vijayarani, S., & Sakila, A. (2015). Performance comparison of OCR tools. International Journal of UbiComp (IJU), 6(3), 19-30. https://doi.org/10.5121/iju.2015.6303.
    2. Teker, M. S. (2020). Antibacterial Activity of Cotton, Wool and Silk Fabrics Dyed with Daphne sericea Vahl Collected from Antalya. Natural and Engineering Sciences, 5(1), 30-36. https://doi.org/10.28978/nesciences.691689.
    3. Tian, M. W., Yan, S. R., Liu, J., Alattas, K. A., & Mohammadzadeh, A. (2022). A new type-3 fuzzy logic approach for chaotic systems: robust learning algorithm. Mathematics, 10(15), 2594. https://doi.org/10.3390/math10152594.
    4. Ahmadi, S. (2018). Metro Tunnel Behavior Based on Near and Far Fault Districts (Case Study of Isfahan-Iran Metro Line 3 Tunnel). International Academic Journal of Science and Engineering, 5(2), 43–58. https://doi.org/10.9756/IAJSE/V5I1/1810025.
    5. Asgari, M. A. R. Y. A. M., Pirahansiah, F. A. R. S. H. I. D., Shahverdy, M. O. H. A. M. M. A. D., Fartash, M. E. H. D. I., Prabhu, A., Ravichandran, D., & Sulaiman, M. N. (2017). Using an ant colony optimization algorithm for image edge detection as a threshold segmentation for OCR system. Journal of Theoretical and Applied Information Technology, 95(21), 5654-5664.
    6. Suneetha, J., Venkateshwar, C., Rao, A.T.V.S.S.N., Tarun, D., Rupesh, D., Kalyan, A., & Sunil Sai, D. (2023). An intelligent system for toddler cry detection. International Journal of Communication and Computer Technologies, 10(2), 5-10. https://doi.org/10.31838/ijccts/10.02.02.
    7. Khairy, G., Abeer, M., Alkhalaf, S., Mohamed, A. A., Radouane, M., Zouggari, N. I., & Parveen, N. (2022). An Algorithm based on Sentiment Analysis And Fuzzy Logic for Opinions Mining. Journal of Theoretical and Applied Information Technology, 100(11).
    8. Al Ebri, N., Baeky, J., Shoufan, A., Vu, Q.H., (2013). Forward-Secure Identity-Based Signature: New Generic Constructions and Their Applications. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 4(1), 32-54.. 10.22667/JOWUA.2013.03.31.032
    9. Zanwar, R. S., Narote, S. A., & Narote, P. S. (2019). Feature Extraction Techniques Based on Swarm Intelligence in OCR [J]. In International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(12), 13-19. https://doi.org/10.35940/ijitee.L2480.1081219.
    10. Ćurĉić, M., Milinković, D., Radivojević, D., & Đurić, D. (2020). Comparison of Diatoms in Well and Drenovaĉa Swamp in Velino Selo Village, in Bosnia and Herzegovina. Archives for Technical Sciences, 1(22), 51–58. https://doi.org/10.7251/afts.2020.1222.051C.
    11. Ashiq, V. M., & Fredrik, D. E. T. (2022). An OCR for Arabic character recognition with advanced principal component analysis based on feature extraction and fuzzy-KNN based classification. International Journal of Health Sciences, 6, 12205-12224. https://doi.org/10.53730/ijhs.v6nS1.7918.
    12. Sahlol, A., Elfattah, M. A., Suen, C. Y., & Hassanien, A. E. (2017). Particle swarm optimization with random forests for handwritten Arabic recognition system. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 2 (pp. 437-446). Springer International Publishing. https://doi.org/10.1007/978-3-319-48308-5_42.
    13. Kakde, P. M., & Gulhane, S. M. (2016). A comparative analysis of particle swarm optimization and support vector machines for devnagri character recognition: an android application. Procedia Computer Science, 79, 337-343. https://doi.org/10.1016/j.procs.2016.03.044.
    14. Aliyev, R., Abizada, S. R., & Abiyev, R. H. (2024). Type-3 fuzzy system for dynamic system control. Iranian Journal of Fuzzy Systems, 21(3), 65-76.
    15. Castillo, O., Amador-Angulo, L., Castro, J. R., & Garcia-Valdez, M. (2016). A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Information Sciences, 354, 257-274. https://doi.org/10.1016/j.ins.2016.03.026.
    16. Liang, Q., & Mendel, J. M. (1999, August). An introduction to type-2 TSK fuzzy logic systems. In FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No. 99CH36315), 3, 1534-1539. https://doi.org/10.1109/FUZZY.1999.790132.
    17. Martínez-Soto, R., Castillo, O., & Aguilar, L. T. (2014). Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO–GA optimization method. Information sciences, 285, 35-49. https://doi.org/10.1016/j.ins.2014.07.012.
    18. Chakravarty, S., & Dash, P. K. (2012). A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock mar-ket indices. Applied Soft Computing, 12(2), 931-941. https://doi.org/10.1016/j.asoc.2011.09.013.
    19. Sennan, S., Ramasubbareddy, S., Balasubramaniyam, S., Nayyar, A., Abouhawwash, M., & Hikal, N. A. (2021). T2FL-PSO: Type-2 fuzzy logic-based particle swarm optimization algorithm used to maximize the lifetime of Internet of Things. IEEE Access, 9, 63966-63979. https://doi.org/10.1109/ACCESS.2021.3069455.
    20. Martínez-Soto, R., Castillo, O., Aguilar, L. T., & Rodriguez, A. (2015). A hybrid optimization method with PSO and GA to automatically design Type-1 and Type-2 fuzzy logic controllers. International journal of machine learning and cybernetics, 6, 175-196. https://doi.org/10.1007/s13042-013-0170-8.
    21. Mai, D. S., Dang, T. H., & Ngo, L. T. (2021). Optimization of interval type-2 fuzzy system using the PSO technique for predictive prob-lems. Journal of information and telecommunication, 5(2), 197-213. https://doi.org/10.1080/24751839.2020.1833141.
    22. Hamdy, M., Ibrahim, A., Abozalam, B., & Helmy, S. (2023). Maximum power point tracking for solar photovoltaic system based on interval type-3 fuzzy logic: Practical validation. Electric Power Components and Systems, 51(10), 1009-1026. https://doi.org/10.1080/15325008.2023.2188316.
    23. Lee, C. S., Wang, M. H., Wang, C. S., Teytaud, O., Liu, J., Lin, S. W., & Hung, P. H. (2018). PSO-based fuzzy markup language for student learn-ing performance evaluation and educational application. IEEE Transactions on Fuzzy Systems, 26(5), 2618-2633. https://doi.org/10.1109/TFUZZ.2018.2810814.
    24. Jain, M., Saihjpal, V., Singh, N., & Singh, S. B. (2022). An overview of variants and advancements of PSO algorithm. Applied Sciences, 12(17), 8392. https://doi.org/10.3390/app12178392
    25. Garcia-Gonzalo, E., & Fernandez-Martinez, J. L. (2012). A brief historical review of particle swarm optimization (PSO). Journal of Bioinformatics and Intelligent Control, 1(1), 3-16. https://doi.org/10.1166/jbic.2012.1002.
    26. Kachitvichyanukul, V. (2012). Comparison of three evolutionary algorithms: GA, PSO, and DE. Industrial Engineering and Management Sys-tems, 11(3), 215-223. https://doi.org/10.7232/iems.2012.11.3.215.
    27. Zhang, W., Liu, Y., & Clerc, M. (2003, November). An adaptive PSO algorithm for reactive power optimization. In 6th International Conference on Advances in Power System Control, Operation and Management. Proceedings. APSCOM 2003 (pp. 302-307). Stevenage UK: IEE. https://doi.org/10.1049/cp:20030603
    28. Gao, Q. (2024). Decision Support Systems for Lifelong Learning: Leveraging Information Systems to Enhance Learning Quality in Higher Education. Journal of Internet Services and Information Security, 14(4), 121-143. https://doi.org/10.58346/JISIS.2024.I4.007.
    29. Mejail, M., Nestares, B. K., & Gravano, L. (2024). The evolution of telecommunications: Analog to digital. Progress in Electronics and Communication Engineering, 2(1), 16–26.
    30. Kumar, T. M. S. (2024). Security challenges and solutions in RF-based IoT networks: A comprehensive review. SCCTS Journal of Embedded Systems Design and Applications, 1(1), 19-24. https://doi.org/10.31838/ESA/01.01.04.
    31. Lazzerini, B., & Marcelloni, F. (2000). A linguistic fuzzy recogniser of off-line handwritten characters. Pattern Recognition Letters, 21(4), 319-327. https://doi.org/10.1016/S0167-8655(99)00162-2.
    32. Suliman, A. (2010). Hybrid of HMM and Fuzzy Logic for Isolated Handwritten Character Recognition. In Character Recognition (pp. 59-82). IntechOpen. https://doi.org/10.5772/9779.
    33. Nihlani, A., Chhabda, P. K, Ahmed, M, & Pandey, S. K. (2024). Funding and Library Resource Management in Higher Education Universities in India. Indian Journal of Information Sources and Services, 14(2), 34–40. https://doi.org/10.51983/ijiss-2024.14.2.06
    34. Tian, M. W., Mohammadzadeh, A., Tavoosi, J., Mobayen, S., Asad, J. H., Castillo, O., & Várkonyi-Kóczy, A. R. (2022). A deep-learned type-3 fuzzy system and its application in modeling problems. Acta Polytech. Hung, 19(2), 151-172. https://doi.org/10.12700/APH.19.2.2022.2.9
    35. Gowan, W. A. (1995). Optical character recognition using fuzzy logic. Microprocessors and Microsystems, 19(7), 423-434. https://doi.org/10.1016/0141-9331(95)99953-O.
    36. Castillo, O., Valdez, F., Melin, P., & Ding, W. (2024). A survey on type-3 fuzzy logic systems and their control applications. IEEE/CAA Journal of Automatica Sinica, 11(8), 1744-1756. https://doi.org/10.1109/JAS.2024.124530.
    37. Bodyansky, Y.V., Petrov, K.E., Deineko, A.A., & Network, Erbn fuzzy clustering of data arrays based on the evolutionary method of cat swarm optimization. New York, New York, New York, 120.
    38. Anitha, J., Vijila, C. K. S., & Hemanth, D. J. (2012). A hybrid genetic algorithm based fuzzy approach for abnormal retinal image classification. In Developments in Natural Intelligence Research and Knowledge Engineering: Advancing Applications (pp. 38-50). IGI Global. https://doi.org/10.4018/978-1-4666-1743-8.ch003
    39. Zanwar, S. R., Shinde, U. B., Narote, A. S., & Narote, S. P. (2021). Hybrid optimization and effectual classification for high recognitions in OCR systems. Journal of the Institution of Engineers (India): Series B, 102(5), 969-977. https://doi.org/10.1007/s40031-021-00604-7.
    40. Wei, L., & Lau, W. C. (2023). Modelling the power of RFID antennas by enabling connectivity beyond limits. National Journal of Antennas and Propagation, 5(2), 43–48. https://doi.org/10.31838/NJAP/05.02.07.
    41. Siti, A., & Ali, M. N. (2025). Localization techniques in wireless sensor networks for IoT. Journal of Wireless Sensor Networks and IoT, 2(1), 1-12.
    42. Surendar, A. (2025). Hybrid Renewable Energy Systems for Islanded Microgrids: A Multi-Criteria Optimization Approach. National Journal of Renewable Energy Systems and Innovation, 27-37
  • Downloads

  • How to Cite

    Sweetlin , P. ., & Jayalalitha , G. . (2025). Optimized Type - 3 Fuzzy Logic for Robust Learning Algorithm ‎in OCR Recognition. International Journal of Basic and Applied Sciences, 14(SI-1), 111-121. https://doi.org/10.14419/608p4p44