On K-idempotent Neutrosophic Z - Matrices and Computation Methods in Decision Making

  • Authors

    • P. Sheeba Maybell Department of Mathematics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
    • M.M. Shanmugapriya Department of Mathematics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
    https://doi.org/10.14419/h97d9g17

    Received date: May 2, 2025

    Accepted date: May 31, 2025

    Published date: July 8, 2025

  • Neutrosophic Z-matrices; k- idempotent NZM; T-ordering NZM; Correlation Measures
  • Abstract

    In this work, k-idempotent neutrosophic z-matrices (NZM) are constructed where k is a fixed product of disjoint transpositions in the symmetric group of order n. Some characteristics and properties of k-idempotent NZM with T-ordering of k-idempotent NZM are discussed. The idea of a k–idempotent neutrosophic z-matrix, which is a generalization of idempotent NZM via permutations, is examined. It is shown that a k-idempotent NZM reduces to an idempotent NZM if and only if k=k  Some related results are provided, together with the derivation of the square symmetric and cube symmetric NZM of k-idempotent conditions. The correlation measure of neutrosophic fuzzy matrices and intuitionistic fuzzy matrices is extended by the notion of this correlation measure of neutrosophic z-matrices. To improve the recommendation performance, we examined the performance of several calculation methods by comparing correlation and the usual procedure. Finally, we compute an experimental result where correlation values can be evaluated and compared to the results of the other methodology.

  • References

    1. Zadeh, L. A. (2011). A note on Z-numbers. Information sciences, 181(14), 2923-2932.
    2. Bekényiová, A., Danková, Z., Hegedüs, M., Mitróová, Z., Dolinská, S., & Znamenáčková, I. (2020). Column Sorption of Toxic Ions in Various Quartz Sand - Packed Columns. Archives for Technical Sciences, 1(22), 43–50.
    3. Aliev, R. A., Huseynov, O. H., & Zeinalova, L. M. (2016). The arithmetic of continuous Z-numbers. Information Sciences, 373, 441-460. https://doi.org/10.1016/j.ins.2016.08.078
    4. Bicak, B., Kokcu, Y., Kecel-Gunduz, S., Ozel, A. E., & Akyuz, S. (2020). The Interaction of Ile-Phe Dipeptide with Phosphatidylinositide 3-Kinase (PI3K): Molecular Dynamics and Molecular Docking Studies. Natural and Engineering Sciences, 5(1), 18-29. https://doi.org/10.28978/nesciences.691673
    5. Lee, H. Y., Jeong, N. G., & Park, S. W. (2004). The idempotent fuzzy matrices. Honam Mathematical Journal, 26(1), 3-15.
    6. Lee, K., Lee, K., Byun, J., Lee, S., Ahn, H., & Yim, K. (2012). Extraction of Platform-unique Information as an Identifier. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 3(4), 85-99. 10.22667/JOWUA.2012.12.31.085
    7. Krishnamohan, K. S., & Muthugurupackiam, K. (2018). Generalisation of Idempotent Fuzzy Matrices. International Journal of Applied Engineering Research, 13(13), 11087-11090.
    8. Olurayi, R. A. (2019). Advocacy in Academic Libraries: A Case Study of Selected Academic Libraries in Southwest Nigeria. Indian Journal of Information Sources and Services, 9(3), 17–20. https://doi.org/10.51983/ijiss.2019.9.3.638
    9. Smarandache, F. (2005). Neutrosophic set, a generalization of the intuitionistic fuzzy Set. International Journal of Pure and Applied Mathematics, 24(3), 287–297.
    10. Sojoudi, M., & Saeedi, H. (2018). The Problem of Locating - Allocation of Facilities and Central Warehouse in the Supply Chain with Bernoulli Demand. International Academic Journal of Science and Engineering, 5(1), 241–254. https://doi.org/10.9756/IAJSE/V5I1/1810021
    11. Anandhkumar, M., Harikrishnan, T., Chithra, S. M., Kamalakannan, V., & Kanimozhi, B. (2024). Partial orderings, Characterizations and Generalization of k-idempotent Neutrosophic fuzzy matrices. International Journal of Neutrosophic Science (IJNS), 23(2), 286-295. https://doi.org/10.54216/IJNS.230223
    12. Kalyan, M., & Surapati, P., (2015). Neutrosophic tangent similarity measure and its application to multiple attribute decision Making. Neutrosophic Sets and Systems, 9, 80-87.
    13. Ye, J. (2014). A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. Journal of intelligent & fuzzy systems, 26(5), 2459-2466. https://doi.org/10.3233/IFS-130916.
    14. Broumi, S., & Deli, I. (2016). Correlation measure for neutrosophic refined Sets and its application in medical diagnosis. Palestine Journal of Mathematics, 5(1), 135-143.
    15. Rajarajeswari, P., & Uma, N. (2014). Correlation measure for intuitionistic fuzzy multi sets. International Journal of Research in Engineering and Technology, 3(1) 611- 617.
    16. Hanafy, I. M., Salama, A. A., & Mahfouz, K. (2013). Correlation coefficients of neutrosophic sets by centroid Method. International Journal of Probability and Statistics, 2(1), 9–12.
    17. Broumi, S., & Smarandache, F. (2013). Correlation coefficient of interval neutrosophic set. Applied mechanics and materials, 436, 511-517. https://doi.org/10.4028/www.scientific.net/AMM.436.511.
    18. Kavitha, M., Murugadas, P., & Sriram, S. (2018). T-Ordering on fuzzy neutrosophic soft matrices. International Journal of Pure and Applied Mathematics, 120(6), 1087-1097.
    19. Du, S., Ye, J., Yong, R., & Zhang, F. (2021). Some aggregation operators of neutrosophic Z-numbers and their multicriteria decision making method. Complex & Intelligent Systems, 7, 429-438. https://doi.org/10.1007/s40747-020-00204-w.
    20. Ye, J. (2021). Similarity measures based on the generalized distance of neutrosophic Z-number sets and their multi-attribute decision making method. Soft Computing, 25(22), 13975-13985. https://doi.org/10.1007/s00500-021-06199-x.
    21. Karabacak, M. (2023). Correlation coefficient for neutrosophic z-numbers and its applications in decision making. Journal of Intelligent & Fuzzy Systems, 45(1), 215-228. https://doi.org/10.3233/JIFS-222625.
    22. Ye, J., Du, S., & Yong, R. (2022). Dombi weighted aggregation operators of neutrosophic Z-numbers for multiple attribute decision making in equipment supplier selection. Intelligent Decision Technologies, 16(1), 9-21. https://doi.org/10.3233/IDT-200191.
    23. Chen, W. P., Fang, Y. M., & Cui, W. H. (2024). Logarithmic Similarity Measure of Neutrosophic Z-Number Sets for Undergraduate Teaching Quality Evaluation. Neutrosophic Sets and Systems, 66, 185-195.
    24. Aliev, R. A., Alizadeh, A. V., & Huseynov, O. H. (2015). The arithmetic of discrete Z-numbers. Information Sciences, 290, 134-155. https://doi.org/10.1016/j.ins.2014.08.024.
    25. Aliev, R. A., Pedrycz, W., Huseynov, O. H., & Eyupoglu, S. Z. (2016). Approximate reasoning on a basis of Z-number-valued if–then rules. IEEE Transactions on Fuzzy Systems, 25(6), 1589-1600. https://doi.org/10.1109/TFUZZ.2016.2612303.
    26. Krishnamoorthy, S., Rajagopalan, T., & Viaykumar, R. (2009). On k-idempotent matrices. International Review of Pure and Applied Mathematics, 5(1), 97-101.
    27. Cen, J. (1999). Fuzzy matrix partial orderings and generalized inverses. Fuzzy sets and Systems, 105(3), 453-458. https://doi.org/10.1016/S0165-0114(97)00259-5.
    28. Anandhkumar, M., Kamalakannan, V., Chithra, S. M., & Said, B. (2023). Pseudo Similarity of Neutrosophic Fuzzy matrices. International Journal of Neutrosophic Science (IJNS), 20(4), 191-196. https://doi.org/10.54216/IJNS.200415
  • Downloads

  • How to Cite

    Maybell , P. S. ., & Shanmugapriya , M. . (2025). On K-idempotent Neutrosophic Z - Matrices and Computation Methods in Decision Making. International Journal of Basic and Applied Sciences, 14(SI-1), 42-54. https://doi.org/10.14419/h97d9g17