Computational Muscle Driven Knee Simulator for Assessment of Total Knee Replacement Post-Cam Mechanics

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Biomechanics of post-cam mechanism is essential in determining the longevity of knee implant. Computational knee simulator is an efficient method in characterizing TKA performance under various boundary conditions. The existing knee simulators, however, were actuated only by quadriceps translation and hip load to perform squatting motion. The present computational knee simulator was developed based on lower limb of Japanese female subject having body weight, W = 51 kg and height, H = 148 cm. Two different designs of PS-type knee prostheses were tested namely Superflex and NRG. The knee motion was driven by three major muscles; quadriceps, hamstrings and gastrocnemius. The biomechanical behavior of tibiofemoral articulation associated with post-cam engagement mechanics was observed. Post-cam engagement occurred at 80° and 65° of flexion angles for Superflex and NRG, respectively. Maximum von Mises stresses at tibial post were 80 MPa and 50 MPa for Superflex and NRG, respectively. The developed computational muscle driven knee simulator has successfully assessed the performance of TKA prostheses.

     


  • Keywords


    Knee simulator; post-cam mechanics; von Mises stress; tibial rotation.

  • References


      [1] X. Shi, Z. Zhou, B. Shen, J. Yang, P. Kang, and F. Pei, “Variations in morphological characteristics of prostheses for total knee arthroplasty leading to kinematic differences,” The Knee, vol. 22, no. 1, pp. 18–23, Jan. 2015.

      [2] M. A. Baldwin, C. W. Clary, C. K. Fitzpatrick, J. S. Deacy, L. P. Maletsky, and P. J. Rullkoetter, “Dynamic finite element knee simulation for evaluation of knee replacement mechanics,” J. Biomech., vol. 45, no. 3, pp. 474–483, Feb. 2012.

      [3] M. Tamaki, T. Tomita, T. Yamazaki, W. J. Hozack, H. Yoshikawa, and K. Sugamoto, “In Vivo Kinematic Analysis of a High-Flexion Posterior Stabilized Fixed-Bearing Knee Prosthesis in Deep Knee-Bending Motion,” J. Arthroplasty, vol. 23, no. 6, pp. 879–885, Sep. 2008.

      [4] K. Nakayama, S. Matsuda, H. Miura, H. Higaki, K. Otsuka, and Y. Iwamoto, “Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty,” J. Bone Joint Surg. Br., vol. 87-B, no. 4, pp. 483–488, Apr. 2005.

      [5] Y. Akasaki, S. Matsuda, T. Shimoto, H. Miura, H. Higaki, and Y. Iwamoto, “Contact Stress Analysis of the Conforming Post-Cam Mechanism in Posterior-Stabilized Total Knee Arthroplasty,” J. Arthroplasty, vol. 23, no. 5, pp. 736–743, Aug. 2008.

      [6] C.-H. Huang, J.-J. Liau, C.-H. Huang, and C.-K. Cheng, “Stress analysis of the anterior tibial post in posterior stabilized knee prostheses,” J. Orthop. Res., vol. 25, no. 4, pp. 442–449, Apr. 2007.

      [7] C.-H. Huang, J.-J. Liau, C.-H. Huang, and C.-K. Cheng, “Influence of Post-cam Design on Stresses on Posterior-stabilized Tibial Posts,” Clin. Orthop., vol. 450, pp. 150–156, Sep. 2006.

      [8] V. Digennaro, F. Zambianchi, A. Marcovigi, R. Mugnai, F. Fiacchi, and F. Catani, “Design and kinematics in total knee arthroplasty,” Int. Orthop., pp. 1–7.

      [9] H. Pandit, T. Ward, D. Hollinghurst, D. J. Beard, H. S. Gill, N. P. Thomas, and D. W. Murray, “Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement,” J. Bone Joint Surg. Br., vol. 87-B, no. 7, pp. 940–945, Jul. 2005.

      [10] Y.-S. Chiu, W.-M. Chen, C.-K. Huang, C.-C. Chiang, and T.-H. Chen, “Fracture of the polyethylene tibial post in a NexGen posterior-stabilized knee prosthesis,” J. Arthroplasty, vol. 19, no. 8, pp. 1045–1049, Dec. 2004.

      [11] P. Mestha, Y. Shenava, and J. C. D’Arcy, “Fracture of the polyethylene tibial post in posterior stabilized (Insall Burstein II) total knee arthroplasty,” J. Arthroplasty, vol. 15, no. 6, pp. 814–815, Sep. 2000.

      [12] H. D. Clarke, K. R. Math, and G. R. Scuderi, “Polyethylene post failure in posterior stabilized total knee arthroplasty,” J. Arthroplasty, vol. 19, no. 5, pp. 652–657, Aug. 2004.

      [13] I. C. Burgess, M. Kolar, J. L. Cunningham, and A. Unsworth, “Development of a six station knee wear simulator and preliminary wear results,” Proc. Inst. Mech. Eng. [H], vol. 211, no. 1, pp. 37–47, Jan. 1997.

      [14] O. K. Muratoglu, C. R. Bragdon, M. Jasty, D. O. O’Connor, R. S. Von Knoch, and W. H. Harris, “Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts,” J. Arthroplasty, vol. 19, no. 7, pp. 887–897, Oct. 2004.

      [15] J. D. DesJardins, P. S. Walker, H. Haider, and J. Perry, “The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity,” J. Biomech., vol. 33, no. 10, pp. 1231–1242, Oct. 2000.

      [16] L. P. Maletsky and B. M. Hillberry, “Simulating Dynamic Activities Using a Five-Axis Knee Simulator,” J. Biomech. Eng., vol. 127, no. 1, pp. 123–133, Mar. 2005.

      [17] J. P. Halloran, C. W. Clary, M. Taylor, A. J. Petrella, P. J. Rullkoetter, and L. P. Maletsky, “Verification of Predicted Knee Replacement Kinematics During Simulated Gait in the Kansas Knee Simulator,” J. Biomech. Eng., vol. 132, no. 8, pp. 081010–081010, Jul. 2010.

      [18] A. C. Godest, M. Beaugonin, E. Haug, M. Taylor, and P. J. Gregson, “Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis,” J. Biomech., vol. 35, no. 2, pp. 267–275, Feb. 2002.

      [19] R. F. Escamilla, “Knee Biomechanics of the Dynamic Squat Exercise,” Med. Sci. Sports Exerc., vol. 33(1), pp. 127–141, Jan. 2001.

      [20] N. J. Dahlkvist, P. Mayo, and B. B. Seedhom, “Forces during Squatting and Rising from a Deep Squat,” Eng. Med., vol. 11, no. 2, pp. 69–76, Apr. 1982.

      [21] T. Finni, P. V. Komi, and V. Lepola, “In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump,” Eur. J. Appl. Physiol., vol. 83, no. 4–5, pp. 416–426, Nov. 2000.

      [22] G. Li, T. W. Rudy, M. Sakane, A. Kanamori, C. B. Ma, and S. L.-Y. Woo, “The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL,” J. Biomech., vol. 32, no. 4, pp. 395–400, Apr. 1999.

      [23] Y. Yonei, Y. Miwa, S. Hibino, Y. Takahashi, R. Miyazaki, T. Yoshikawa, H. Moriwaki, T. Hasegawa, T. Hiraishi, and K. Torii, “Japanese Anthropometric Reference Data - Special Emphasis on Bioelectrical Impedance Analysis of Muscle Mass,” Anti-Aging Med., vol. 5, no. 6, pp. 63–72, 2008.

      [24] D. Winter A., Biomechanics and Motor Control of Human Movement, 4th ed. Wiley, 2009.

      [25] S. Hall J., Basic Biomechanics, 6th ed. New York: McGraw Hill, 2012.

      [26] J. P. Halloran, A. J. Petrella, and P. J. Rullkoetter, “Explicit finite element modeling of total knee replacement mechanics,” J. Biomech., vol. 38, no. 2, pp. 323–331, Feb. 2005.

      [27] E. M. Abdel-Rahman and M. S. Hefzy, “Three-dimensional dynamic behaviour of the human knee joint under impact loading,” Med. Eng. Phys., vol. 20, no. 4, pp. 276–290, Jun. 1998.

      [28] H. U. Stäubli, L. Schatzmann, P. Brunner, L. Rincón, and L.-P. Nolte, “Mechanical Tensile Properties of the Quadriceps Tendon and Patellar Ligament in Young Adults,” Am. J. Sports Med., vol. 27, no. 1, pp. 27–34, Jan. 1999.

      [29] C. N. Maganaris and J. P. Paul, “Tensile properties of the in vivo human gastrocnemius tendon,” J. Biomech., vol. 35, no. 12, pp. 1639–1646, Dec. 2002.

      [30] E. M. Arnold, S. R. Ward, R. L. Lieber, and S. L. Delp, “A Model of the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng., vol. 38, no. 2, pp. 269–279, Dec. 2009.

      [31] M. A. Mohd Anuar, M. Todo, R. Nagamine, and S. Hirokawa, “Dynamic Finite Element Analysis of Mobile Bearing Type Knee Prosthesis under Deep Flexional Motion,” Sci. World J., vol. 2014, p. e586921, Jul. 2014.

      [32] T. Nagura, C. O. Dyrby, E. J. Alexander, and T. P. Andriacchi, “Mechanical loads at the knee joint during deep flexion,” J. Orthop. Res., vol. 20, no. 4, pp. 881–886, 2002.

      [33] K. Kanekasu, S. A. Banks, S. Honjo, O. Nakata, and H. Kato, “Fluoroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling,” J. Arthroplasty, vol. 19, no. 8, pp. 998–1003, Dec. 2004.

      [34] C. K. Fitzpatrick, C. W. Clary, A. J. Cyr, L. P. Maletsky, and P. J. Rullkoetter, “Mechanics of post-cam engagement during simulated dynamic activity,” J. Orthop. Res., vol. 31, no. 9, pp. 1438–1446, Sep. 2013.

      [35] N. Arnout, L. Vanlommel, J. Vanlommel, J. P. Luyckx, L. Labey, B. Innocenti, J. Victor, and J. Bellemans, “Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs,” Knee Surg. Sports Traumatol. Arthrosc., pp. 1–11, Jul. 2014.

      [36] S. D. Kwak, C. S. Ahmad, T. R. Gardner, R. P. Grelsamer, J. H. Henry, L. Blankevoort, G. A. Ateshian, and V. C. Mow, “Hamstrings and iliotibial band forces affect knee kinematics and contact pattern,” J. Orthop. Res., vol. 18, no. 1, pp. 101–108, Jan. 2000.

      [37] J. Victor, L. Labey, P. Wong, B. Innocenti, and J. Bellemans, “The influence of muscle load on tibiofemoral knee kinematics,” J. Orthop. Res., vol. 28, no. 4, pp. 419–428, 2010


 

View

Download

Article ID: 22509
 
DOI: 10.14419/ijet.v7i4.27.22509




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.