Experimental analysis and comparison of tropospheric scintillation prediction models using eutelsat-36b satellite in a tropical Nigeria

  • Authors

    • Joseph Ojo Department of Physics,The Federal University of Technology Akure, Nigeria http://orcid.org/0000-0001-9329-1799
    • Babatunde Rabiu Centre for Atmospheric Research, National Space Research and Development Agency, Federal Ministry of Science and Technology, Anyigba
    • Sandro Radicella Telecommunications/ICT for Development Laboratory, The Abdus Salam International Centre, for Theoretical Physics, Trieste
    • Obisesan Obiyemi Department of Electrical and Electronics, Osun State University, Osogbo
    2017-12-12
    https://doi.org/10.14419/ijbas.v7i1.8257
  • Tropospheric Scintillations, Trodan Data, Tropical Climate, Satellite Communication.
  • Abstract

    Knowledge on clear-air effects is of paramount importance to proper link budgeting for optimum communication systems design performances. In this paper, one-year (January - December 2013) tropospheric scintillation data are extracted from the EUTELSAT-36B Ku-band satellite measurements installed at Akure (Lat: 7.17 oN, Long: 5.18 oE, Alt: 358 m) for statistical analysis and the result compared with some established troposphere scintillation models in order to obtain the best prediction model performance for this region. The result shows that even in the absence of rain, tropospheric scintillation shows a strong seasonal effect in this region up to amplitude above 0.92 dB. The scintillation intensity fits better to gamma distribution at a high scintillation level taken into consideration the local meteorological parameters. Models comparison with experimental data also shows that the Karasawa model with the lowest percentage error of about 7% was found to be best fit for predicting propagation impairment relating to be fading at a Ku band frequency in this region. The overall results will provide information on scintillation margin needed for sizing antennas and amplifiers for reliable performance and the average bit-error probability on a scintillation-degraded digital satellite link in this region.

  • References

    1. [1] Rappaport, T. S, 2002, Wireless Communications, 2nd ed., New York: Prentice Hall.

      [2] Matricciani. E. Mauri, M & Riva C. (1996), Relationship between scintillation and rain attenuation at 19.77 GHz, Radio Sci., 31(2), 273–279. https://doi.org/10.1029/95RS03475.

      [3] Marzano FS, & D’Auria G (1998). Model-based prediction of amplitude scintillation variance due to clear-air tropospheric turbulence on Earth-satellite microwave links, IEEE Trans. Antennas Propag. 46 (10), 1506–1518. https://doi.org/10.1109/8.725283.

      [4] Vasseur H (1998), Prediction of Tropospheric Scintillation on Satellite Link from Radiosonde. IEEE Ant. Prop., 47, 293-300. https://doi.org/10.1109/8.761069.

      [5] Karasawa Y., Yasukawa K. & Yamada M. (1988). Tropospheric scintillation in the 14/11 GHz bands on Earth-space paths with low elevation angles, IEEE Trans. Antennas Propagat. 36 (4), 563 – 569. https://doi.org/10.1109/8.1146.

      [6] Mandeep JS & Mohamad Tariqul ISLAM (2012). Evaluation of Statistical Tropospheric Scintillation Models Using SUPERBIRD-C Satellite for Malaysia. Acta Geophysica, 60 (4), 1180–1191. https://doi.org/10.2478/s11600-012-0024-x.

      [7] Dao H, Islam M.R, & Al-Khateeb K (2013). Rain Fade Slope Model in Satellite Path Based on Data Measured in Heavy Rain Zone, Antennas and Wireless Propagation Letters, IEEE, 12, 50-53. https://doi.org/10.1109/LAWP.2012.2237373.

      [8] Pedro Garcia; Jose M.Riera; Ana Benarroch (2002), Propagation Impairment Mitigation for Millimeter wave Radio Systems: Statistics of dry and wet scintillation in Madrid using Intelsat 50 GHz beacon, PM3-013 1st international workshop, COST Action 280.

      [9] Mandeep JS (2011). Extracting of tropospheric scintillation propagation data from Ku-band satellite beacon. Int J Phy Sci, 6(11), 2649–2653.

      [10] Cheng CY & Mandeep JS (2014). Comparison of tropospheric scintillation prediction models of the Indonesian climate, Earth, Planets and Space, 66:64. https://doi.org/10.1186/1880-5981-66-64.

      [11] Agunlejika, O. Raji TI, & Adeleke OA (2007). Tropospheric scintillation prediction for some selected cities in Nigeria’s tropical climate. Int. Journal of Basic and Applied Science, 9, 10, 12-19.

      [12] Vilar E. & Haddon J. (1984). Measurement and modeling of scintillation intensity to estimate turbulence parameters in an Earth-space path, IEEE Trans.Antenn. Propag. 32, 4, (1984), 340-346. https://doi.org/10.1109/TAP.1984.1143340.

      [13] Vilar E. & Haddon J. (1984). Measurement and modeling of scintillation intensity to estimate turbulence parameters in an Earth-space path, IEEE Trans.Antenn. Propag. 32, 4, (1984), 340-346

      [14] Van de Kamp MM. Tervonen JK. Salonen E.T & Pirates Baptista, J.P.V., (1999). Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Trans. Antennas. Propagat, 47(2), 249-260. https://doi.org/10.1109/8.761064.

      [15] Karasawa Y., Yamada, M. & Allnutt, JE. A new prediction method for tropospheric scintillation on Earth–Space paths, IEEE Trans. Antennas Propagat., Vol. 36, (Nov. 1988), 1608-1614. https://doi.org/10.1109/8.9712.

      [16] Karasawa Y., Yamada, M. & Allnutt, J. E. A new prediction method for tropospheric scintillation on Earth–Space paths, IEEE Trans. Antennas Propagat., Vol. 36, (Nov. 1988), 1608-1614. https://doi.org/10.1109/8.9712.

      [17] Ojo JS & Falodun SE. (2012). NECOP Propagation Experiment: Rain-rate distributions observations and prediction model comparisons, Int. Journal of Antennas and Propagation, Vol. 2012, https://doi.org/10.1155/2012/913596.

      [18] Ojo, JS, Oluwarotimi. EO (2014). Tropical Rainfall Structure Characterization over Two Stations in Southwestern Nigeria for Radiowave Propagation Purposes. Journal of Emerging Trends in Engineering and Applied Sciences, Scholar link Research Institute Journals, 5(2), 116-122.

      [19] Garcia-del-Pino, P. Riera JM., & Benarroch A. (2012). Tropospheric scintillation with concurrent rain attenuation at 50 GHz in Madrid. IEEE Trans Antennas and Propagation, Vol. 60 (3), 1578-1583. https://doi.org/10.1109/TAP.2011.2180326.

      [20] Mandeep JS (2011). Anthony Cheng Chen Ye, M.Abdullah, M.Tariqul. Comparison and analysis of tropospheric scintillation models for Northern Malaysia†Acta Astronautica 69, 2–5. https://doi.org/10.1016/j.actaastro.2011.02.014.

      [21] Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), "14: Lognormal Distributions", Continuous univariate distributions. Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-58495-7, MR 1299979.

      [22] Banjo OP & Vilar E., 1986, "Measurement and modeling of amplitude scintillations on low-elevation earth-space paths and impact on communication systems", IEEE Trans. on Communications Vol. COM-34 pp. 774-780. https://doi.org/10.1109/TCOM.1986.1096617.

      [23] Peters G. Marzano FS. D’Auria G & Riva C., Vanhoenacker-Janvier D (1997). Evaluation of statistical models for clear-air scintillation prediction using Olympus satellite measurements, Int. J. Satell. Commun. 15, 2, 73-88. https://doi.org/10.1002/(SICI)1099-1247(199703)15:2<73::AID-SAT570>3.0.CO;2-N.

  • Downloads

    Additional Files

  • How to Cite

    Ojo, J., Rabiu, B., Radicella, S., & Obiyemi, O. (2017). Experimental analysis and comparison of tropospheric scintillation prediction models using eutelsat-36b satellite in a tropical Nigeria. International Journal of Basic and Applied Sciences, 7(1), 8-14. https://doi.org/10.14419/ijbas.v7i1.8257

    Received date: 2017-08-18

    Accepted date: 2017-09-20

    Published date: 2017-12-12