Landau theoretical analyses of phase transitions and ferroelec-tricity in antiferroelectric ferroics

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    This paper presents Landau theoretical interpretation of phase transitions in Antiferroelectrics (AFEs) materials. The results show that the phase transitions occurring in AFEs have prominently first and second order properties. Landau theories of first and second order phase transition have been appropriately analyzed in order to explain some of desirable phenomenological behaviors occurring in AFE materials. The spatial order parameter profile of AFE domain wall was derived and tested for possibilities of having ferroelectricity (FE) in accordance with Landau type energy functional. It was found that FE may appear but with additional system instability because of additional energy as a result of polarization gradient.


  • Keywords


    Antiferroelectrics; Domain Walls; Ferroelectricity; Ferroics; Phase Transitions.

  • References


      [1] Wada S., Yako K., Muraishi T., Kakemoto H. and Tsurumi T. (2006), Development of Lead-free Piezoelectric Materials using Domain wall engineering. Key Engineering Materials, 320, 151-154. https://doi.org/10.4028/www.scientific.net/KEM.320.151.

      [2] Wada S., Yako K., Kakemoto H., Erhart J. and Tsurumi T (2004), Enhanced Piezoelectric Property of BaTiO3 Single Crystals with different Domain Sizes. Key engineering Materials 269, 19-22. https://doi.org/10.4028/www.scientific.net/KEM.269.19.

      [3] Yako K., Kakemoto H., Tsurumi T. and Wada S. (2006), Enhanced Piezoelectric properties of Barium Titanate Single Crystals by Domain Engineering. Key Engineering Materials, 301, 23-26. https://doi.org/10.4028/www.scientific.net/KEM.301.23.

      [4] C. Kittel 1951, Theory of Antiferroelectric crystals. Phys. Rev. 82(5), 729-732. https://doi.org/10.1103/PhysRev.82.729.

      [5] Tagantsev A. K., Courtens E. and Arzel L. (2001), Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys rev. B 64, 224107. https://doi.org/10.1103/PhysRevB.64.224107.

      [6] Zhong W. and Vanderbilt D. (1995), Competing Structural Instabilities in Cubic Perovskites. Phys. Rev. Lett. 74, 2587–2590. https://doi.org/10.1103/PhysRevLett.74.2587.

      [7] Houchmandzadeh B., Lajzerowicz J. and Salje E. (1991), Order parameter coupling and chirality of domain walls. Phys.: Condens. Matter 3, 5163-5169. https://doi.org/10.1088/0953-8984/3/27/009.

      [8] Haun J. M., Furman E., Jang S. J., McKinstry H. A. and Cross L. E. (1987), Thermodynamic theory of PbTi03. J. Appl. Phys. 62(8), 3331-3338. https://doi.org/10.1063/1.339293.

      [9] Bell A. J. (2001), Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes. Applied physics 89(7), 3907-3914. https://doi.org/10.1063/1.1352682.

      [10] Li Y. L., Cross L. E. and Chen L. Q. (2005), A phenomenological thermodynamic potential for BaTiO3 single crystals. Appl. phys. 98, 064101-1-4. https://doi.org/10.1063/1.2042528.

      [11] Hlinka J. (2008), Domain Walls of BaTiO3 and PbTiO3 within Ginzburg-Landau-Devonshire mode. Ferroelectrics 375, 132-137. https://doi.org/10.1080/00150190802437977.

      [12] Hlinka J. and Màrton P. (2006), Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B. 74, 104104. https://doi.org/10.1103/PhysRevB.74.104104.

      [13] Okada K. (1969), Phenomenological theory of Antiferroelectric Transition. I. Second-Order transition. J. Phys. Soc. Jap. 27(2), 420-428. https://doi.org/10.1143/JPSJ.27.420.

      [14] Benguigui L. (1970), some remarks about antiferroelectric phase transitions. Phys. Let. 33(A2), 79-80. https://doi.org/10.1016/0375-9601(70)90661-4.

      [15] Cao W. (1994), Polarization gradient coefficients and the dispersion surface of the soft mode in perovskite ferroelectrics. J. Phys. Soc. Jpn. 63(3), 1156-1161. https://doi.org/10.1143/JPSJ.63.1156.

      [16] Cao W. and Barsch G. R. (1990), Landau-Ginzburg model of interphase boundaries in improper ferroelastic perovskites of symmetry. Phys. Rev. B 41(7), 4334. https://doi.org/10.1103/PhysRevB.41.4334.

      [17] Cao W. and Cross L. E. (1991), Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. 44(1), 5-12. https://doi.org/10.1103/PhysRevB.44.5.

      [18] Ishibashi Y. and Salje E. (2002), A theory of ferroelectric 90 degree domain wall. Phys. Soc. Jpn. 71(11), 2800–2803. https://doi.org/10.1143/JPSJ.71.2800.

      [19] Ishibashi Y. (1993), The 90°-Wall in the tetragonal phase of BaTiO3-type ferroelectrics. Phys. Soc. Jpn. 62(3), 1044-1047. https://doi.org/10.1143/JPSJ.62.1044.

      [20] Pelaiz-Barranco A., Guerra J. D. S., Garcia-Zaldivar O., Calderon-Pinar F., Mendoza M. E., Hall D. A.and Araujo E. B. (2009), Phase transition and dielectric properties of La-doped Pb(Zr, Tr)O3 antiferroelectric ceramics. Solid State Communications 14, 1308-1311. https://doi.org/10.1016/j.ssc.2009.05.004.

      [21] Charnaya E. V., Pogorelova O. S. and Tien C. (2001), Phenomenological model for the antiferroelectric phase transition in thin films and small particles. Physica B 305, 97-104. https://doi.org/10.1016/S0921-4526(01)00613-5.

      [22] Raevski I. P. and Prosandeev S. A. (2002), A new, lead free, family of perovskite with a diffuse phase transition: NaNbO3-based solid solutions. J. Phys. Chem. Solids 63, 1939-1950. https://doi.org/10.1016/S0022-3697(02)00181-6.

      [23] Tagantsev A. K., Cross L. E.and Fousek J. (2010), Domains in Ferroic Crystals and thin Films, New York: Springer. https://doi.org/10.1007/978-1-4419-1417-0.


 

View

Download

Article ID: 8076
 
DOI: 10.14419/ijbas.v6i3.8076




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.