Optimization of cadmium(II) adsorption onto modified and unmodified lignocellulosics (rice husk and egussi peeling)

  • Authors

    • Tchuifon Tchuifon Donald Raoul University of Dschang, Faculty of Science, Department of Chemistry
    • Nche George Ndifor-Angwafor University of Dschang
    • Ngakou Sadeu Christian University of Dschang
    • Kamgaing Théophile University of Dschang
    • Ngomo Horace Manga University of Yaoundé 1
    • Anagho Solomon Gabche University of Dschang
    • Ketcha Joseph Mbadcam University of Yaoundé 1
  • Biosorption, Cadmium (II) Ions, Lignocellulosic Material, Rice Husk, Egussi Peeling.
  • The present study is based on the adsorption of cadmium (II) ions on rice husk and egussi peeling, unmodified and modified with nitric acid in aqueous solution, using batch technique. It was carried out as a function of contact time, dosage, pH and initial concentration. The equilibrium time was achieved within 25 minutes for unmodified rice husk (Glu NT) and 20 minutes for unmodified egussi peeling (Cuc NT) with an adsorbed quantity of 13.18 mg/g. In the case of modified materials, we obtained 15 minutes for modified rice husk (Glu HNO3) and 10 minutes for modified egussi peeling (Cuc HNO3) with an adsorbed quantity of 18.77 mg/g. The maximum biosorption occurred at pH 5.5 for all biosorbents. The adsorbent mass for maximum adsorption was 0.4 g giving an adsorption capacity of 62.02 % for unmodified adsorbents. In the case of modified adsorbents, the minimal mass at which maximum adsorption occurred was 0.4 g giving an adsorption capacity of 98.33 % and 0.6 g giving an adsorption capacity of 98.33 % for modified rice husk and egussi peeling respectively. The adsorbent/adsorbate equilibrium was well described by the pseudo-second order kinetic model and by Langmuir’s and Freundlich adsorption model. This models showed that the adsorption of cadmium (II) is a chemisorption process.

  • References

    1. [1] Anagho S.G., Ketcha J.M., Tchuifon T. D.R., Ndi J.N., (2013). Kinetic and Equilibrium Studies of the adsorption of Mercury (II) ions from aqueous Solution using Kaolinite and Metakaolinite clays from Southern Cameroon. International Journal of Research in Chemistry and Environment 3, 1-11.

      [2] Ketcha J.M..; Anagho S.G.; Ndi J. N., Kammegne M. A., (2011). Kinetic and equilibrium studies of the adsorption of lead (II) ions from aqueous solution onto two Cameroon clays: Kaolinite and smectite. Research Journal of Environmental Chemistry and Ecotoxicology 3, 290-297.

      [3] Sousa N.V.O., Tecia V.C., Honorato S.B., Gomes C.L., Baros F.C.F., Araujo-Silvia M.A., Freire P.T. C., Nascimento R.F., (2012). Coconut bagasse treated by thiourea/ammonia solution for cadmium removal: kinetics and adsorption equilibrium. Bioresource Technology 7, 1504-1524.

      [4] Tchuifon Tchuifon D.R., Anagho S.G., Njanja E., Ghogomu J.N., Ndifor-Angwafor N. G., Kamgaing T., (2014). Equilibrium and kinetic modelling of methyl orange adsorption from aqueous solution using rice husk and egussi peeling. International Journal of Chemical Sciences 12(3), 741-761.

      [5] Essomba J.S., Ndi J.N., Belibi B.P.D., Tagne G.M. Ketcha J.M., (2014). Adsorption of cadmium (II) ions from aqueous solution onto kaolinite and metakaolinite. Pure and Applied Chemical Sciences 2(1), 11 - 30

      [6] Abdellah A., Abdelkader I., Mohand S.O., (2007). Hg (II) sorption from aqueous solution by blast –furnace slag. Water Quality Research Journal of Canada 42 (1), 41-45.

      [7] Akporhonor E.E., Egwaikhide P.A., (2007). Removal of selected metal ions from aqueous solution by adsorption onto chemically modified maize cobs. Scientific Research and Essay 2(4), 132-134.

      [8] Vieira R.S.H.F., Boya V., (2002). Biosorption: a solution to pollution. International Microbiology 3, 17-24.

      [9] Ho Y.S., Chiang T.H., Hsueh Y.M., (2005). Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process in Biochemistry 40, 119–124. http://dx.doi.org/10.1016/j.procbio.2003.11.035.

      [10] Tchuifon Tchuifon Donald Raoul, Anagho Solomon Gabche, Nche George Ndifor-Angwafor, Ketcha Joseph Mbadcam., (2015). Adsorption of salicylic and sulfosalicylic acid onto powdered Activated Carbon prepared from Rice and Coffee Husks. International Journal of Current Engineering and Technology 5(3), 1641-1652.

      [11] Igwe J.C., Abia, A. (2007). Adsorption kinetics and Intra-particulate Diffusivities for Bioremediation of Co (II), Fe (II) and Cu (II) ions from waste water using modified and unmodified maize cob. International Journal of Physics and Science 2, 119-127.

      [12] Igwé J.C., Abia, A.A., Ibeh, C.A., (2008). Adsorption kinetic and intraparticule diffusivities of Hg, as and Pb ions on unmodified and thiolated coconut fiber. International Journal of Environmental Sciences and Technology 5(1), 83-92. http://dx.doi.org/10.1007/BF03326000.

      [13] Volesky B., (2003). Sorption and biosorption. BV Sorbex Inc, Monteal-St.Lambert, Quebec, Canada, 315 P.

      [14] Kannan N., Sundaram M. M., (2001). Kinetics and mechanism of removal of Methylene blue by adsorption on various carbons - A comparative study. Dyes and Pigments 51, 25-40. http://dx.doi.org/10.1016/S0143-7208(01)00056-0.

      [15] Ebner A.D., Ritter J.A. and Novratil, J.D. (2001). Adsorption of Cesium, Strontium and Cobalt ions on magnetite and a magnetite-silica composite. Industrial and Engineering Chemistry Research 40, 1615-1623 http://dx.doi.org/10.1021/ie000695c.

      [16] Saifuddin, N.N. and Raziah A.Z., (2007). Removal of heavy metals from industrial effluent using saccharomyces cerevisiae (bakers’ yeast) immobilized in chitosan/Lignosulphonate matrix. Journal of Applied Sciences and Research 3 (12), 2091-2099.

      [17] Reppelin V., (2006) Optimisation des paramètres durée et temperature d’un traitement thermique du bois. Modification des propriétés d’usage du bois en relation avec les modifications physico-chimiques et ultrastructurales occasionnées par le traitement thermique. Thèse de Doctorat, Ecole supérieure des mines de Saint-Etienne, Saint-Etienne, France, 225p.

      [18] Fazal A., Rafique U. (2012). Mechanistic Understanding of Cadmium Sorption by Sulfonated and Esterified Spent Black Tea. International Journal of Chemistry and Environmental Engineering 3, 230-237.

      [19] Ofomaja A.E., Yuh-Shan H., (2005). Effect of pH on cadmium biosorption by coconut copra meal. Chemical Engineering Journal 7, 50-57.

      [20] Imamoglu M., Tekir O., (2008). Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husk. Desalination 228, 108-113. http://dx.doi.org/10.1016/j.desal.2007.08.011.

      [21] Babarind, N.A.A., Babalola, J.O., (2010). The biosorption of Pb (II) from solution by elephant grass (pennisetum purpureum): kinetics, Equilibrium, and thermodynamics studies. Pacific journal of science and technology, 11, 622-629.

      [22] Rao K. S., Mohapatra M., Anand S., Venkateswarlu P., (2010). Review on cadmium removal from aqueous solution. International Journal of Engineering Science and Technology 2, 81-103.

      [23] Eun, W.S., Rowell R.M. (2005). Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption improvement. Chemosphere 60, 1054-1061. http://dx.doi.org/10.1016/j.chemosphere.2005.01.017.

      [24] Mona E.O., Moustapha, S.M., (2013). Removal of Cd (II) ion from wastewater by adsorption onto treated old newspaper: kinetic modeling and isotherm studies. International Journal of Industrial Chemistry, 4, 1-7.

      [25] Và zquez G.R., Fernà ndez-Bea R., Friere M.S., Gonzà lez-Alvarez J., Antorrena, G., (2007). Determination of equilibrum, kinetic and thermodynamic parameters for the adsorption of cadmium (II) onto Castenea sativa shell. Proccedings of European Congress of Chemical Engineering. Copenhagen, 16-20 september 2007, 1-7.

      [26] Tchuifon Tchuifon D.Raoul, Anagho S.Gabche, Ketcha J.Mbadcam, Nche G.Ndifor-Angwafor., Ndi J. Nsami, (2014). Kinetics and equilibrium studies of adsorption of phenol in aqueous solution onto activated carbon prepared from rice and coffee husks. International Journal of Engineering and Technical Research 2(10), 166-173.

      [27] Dada A.O., Olalekan A.P., Olatunya A.M., Dada O., (2012). Langmuir, Freundlich, Temkin and Dibinin-Raduskevich isotherms studies of equilibrium sorption on Zn2+unto phosphoric modified rice husk, Journal of Applied Chemistry, 3(1), 38-45

      [28] Wallace M.A. (2003). An Evaluation of Copper Biosorption by Brown Seaweed under Optimized Conditions. Environmental Biotechnology 6, 174-184.

      [29] Ho Y.S., (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, B136, 681-689 http://dx.doi.org/10.1016/j.jhazmat.2005.12.043.

      [30] Ho Y.S., McKay G. (1999). Pseudo- second order model for sorption process. Process Biochemistry, 34, 451-465. http://dx.doi.org/10.1016/S0032-9592(98)00112-5.

  • Downloads

  • How to Cite

    Raoul, T. T. D., Ndifor-Angwafor, N. G., Christian, N. S., Théophile, K., Manga, N. H., Gabche, A. S., & Mbadcam, K. J. (2015). Optimization of cadmium(II) adsorption onto modified and unmodified lignocellulosics (rice husk and egussi peeling). International Journal of Basic and Applied Sciences, 5(1), 45-51. https://doi.org/10.14419/ijbas.v5i1.5195