Assessment of the radiative properties of some semi-conductors for applications in thermophotovoltaic and thermophotonic conversion systems

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Today, major energy challenge is to find alternatives to exhaustible and polluting fossil fuels. Photovoltaic (PV), thermophotovoltaic (TPV) and thermophotonic (TPX) systems offer interesting prospects for the purpose. However, these technologies require a judicious choice of the emitting materials. This paper presents an assessment of the radiative properties of some semi-conductors that can be used for these systems. The method is based on the principles of thermal radiation, Fresnels theories of radiation, and Maxwells equations describing the classical theory of the propagation of electromagnetic waves in a homogeneous and isotropic medium. The influence of the extinction index on the optical characteristics of some materials (SiC, Si, Ge, and ZnO) is evaluated. The transfer matrix method was used to evaluate and assess the behaviour of the radiative properties of strongly and weakly absorbing multilayered structures. It was found that the use of a non-reflecting treatment (glass or ZnO) on the material, enables to reduce multiple reflections and therefore to improve the efficiency of the system.

    Keywords: Semi-Conductors; Thermal Radiation; Energy Conversion Systems; Photovoltaic; Thermophotovoltaics; Thermophotonics.

  • References

    1. K.R. Catchpole, K.L. Lin, M.A. Green, A.G. Aberle, R. Corkish, J. Zhao, A. Wang. Thin semiconducting layers and nanostructures as active and passive emitters for thermophotonics and thermophotovoltaics. Physica E 14 (2002) 9195. (02)00363-6.
    2. Thomas Bauer (2011). Thermophotovoltaics: Basic Principles and Critical Aspects of System Design. Springer-Verlag Berlin Heidelberg.
    3. Donald L. Chubb. Fundamentals of Thermophotovoltaic energy conversion. NASA Glenn Research Center 1000 Brookpark Road, MS 302-1 Cleveland, OH 44135 USA. Published by Elsevier B.V. 2007.
    4. H.H. Kolm, Quarterly Progress Report, Solid State Research, Group 35, MIT-Lincoln Laboratory, Lexington, MA, May 1, 1956, 13.
    5. Green Martin A. (2000). ""Third Generation Photovoltaics: Advanced Structures Capable of High Efficiency at Low Cost". Proceedings of the 16th European Photovoltaic Solar Energy Conference. Glasgow, Scotland
    6. Bitnar, B. (2003). "Silicon, germanium and silicon/germanium photocells for thermophotovoltaics applications". Semiconductor Science and Technology 18 (5): S221. Bibcode2003SeScT.18S.221B Jrmie Drevillon and Philippe Ben-Abdallah. Abinitio design of coherent thermal sources. Journal of Applied Physics, 102(11):114305, 2007
    7. E. Nefzaoui, J. Drevillon, and K. Joulain. Conception ET optimisation d'metteurs slectifs pour applications thermophotovoltaques. Institut Pprime, CNRS-Universit de Poitiers-ENSMA, Dpartement fluide, Thermique, Combustion 2010.
    8. Jean-Jacques Greffet, Remi Carminati, Karl Joulain, Jean-Philippe Mulet, Stephane Mainguy, and Yong Chen. Coherent emission of light by thermal sources. Nature, 416:6164, 2002
    9. A. M. Portis, Electromagnetic Fields, Sources and Media, John Wiley & Sons, 1978, Chapter 12.
    10. K. Lagha-Menouer. Etude ET ralisation d'une cellule solaire multi couches du type Si-SiO2-SnO2-ZnO par APCVD. Doctorat en Electronique. Universite Mouloud Mammeri de Tizi-Ouzou (2011)
    11. O. Perrot. I.U.T. de Saint-Omer Dunkerque, Dpartement Gnie Thermique et nergie, COURS DE RAYONNEMENT 3me Semestre (2010-2011).




Article ID: 3261
DOI: 10.14419/ijbas.v3i4.3261

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.