Exact static spherical symmetric soliton-like solutions to the scalar and electromagnetic nonlinear induction field equations in general relativity

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this paper, we have obtained exact static spherical symmetric soliton-like solutions to the electromagnetic and scalar nonlinear induction field equations taking into account the own gravitational field of the elementary. The results show that the metric tensor functions are regular with localized energy density. Moreover, the total energy of the nonlinear induction fields is bounded and the total charge of elementary particles has a finite value. The importance of the own gravitational field of elementary particles and the role of the nonlinearity of fields in the determination of these solutions have been proved.


  • Keywords


    Interaction, scalar, electromagnetic, gravitational, fields, description, configuration, elementary particles.

  • References


      [1] Scott, A. C. Chu, F. Y. F, McLaughlin, D. W., Proc. IEEE 61, 1443 (1973)

      [2] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations, Academic, London, (1982)

      [3] J. K. Perring, T. H. R. Skyrme, Nucl. Phys. 31, 550 (1962)

      [4] Yu. P. Rybakov, Particle Structure in Nonlinear Field Theory, Peoples' Friendship University Press, Moscow, (1985)

      [5] R. Rajaraman, An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland, New York, (1982)

      [6] N. N. Bogoliubov, D. V. Shirkov, An Introduction to the Theory of Quantized Fields, Nauka, Moscow, (1976)

      [7] D. J. Korteweg , G. De Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philosophical Magazine 5th Series, 36, 422-443, (1895)

      [8] J.S.Russell, Report on Waves, Report of the Fourteenth Meeting of Association for the Advancement of Science, John Murray, LoridRes, 311-390, (1844)

      [9] R. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics Phys. Rev. Lett., 11, 237-238, (1963)

      [10] D. Wiltshire, M. Visser, S. Scott, The Kerr space-time: rotating black holes in general relativity, Cambridge University Press, (2009)

      [11] R. M. Wald, General relativity, Chicago University Press, (1984)

      [12] R. Pellicer, R. J. Torrence, Nonlinear Electrodynamics and General Relativity, Journal of Mathematical Physics 10.1718 (1969)

      [13] J. Plebanski, Non-Linear Electrodynamics, A Study C.I.E.A. del I.P.N, Mexico City,(1966)

      [14] K. A. Bronnikov, V. N. Melnikov, G. N. Shikin, K. P. Staniukovich, Scalar, Electromagnetic, and Gravitational Fields Interaction : Particlelike Solutions, Annals of physics 118, PP 84-107 (1979)

      [15] Yu. P. Rybakov, G. N. Shikin and B. Saha, Droplets in general relativity: exact self-consistent solution to the interacting scalar and electromagnetic field equation, URSS publishers, Moscou,, (1996)

      [16] Yu. P. Rybakov, G. N. Shikin, Solitons of Nonlinear Scalar Electrodynamics in General Relativity ,International Journal of Theoretical Physics, 36 (6), pp. 1475-1494 (1997)

      [17] A. Adanhoumè, A. Adomou, M. N. Hounkonnou, Nonlinear spinor field equations in gravitational Theory: Spherical symmetric soliton-like solutions, (2012)

      [18] A. Adomou, J. Edou, S. Massou, Soliton-Like Spherical Symmetric Solutions of the Nonlinear Spinor Field Equations Depending on the Invariant Function IP=P2 in the General Relativity Theory, Journal of Applied Mathematics and physics, 7, 2818-2835 (2019)

      [19] A. Adomou, J. Edou, S. Massou, Soliton-Like Spherical Symmetric Solutions of the Nonlinear Spinor Field Equations in General Relativity Theory, International Journal of Applied Mathematics and theoretical physics, Vol 5. No. 4.2019.pp 118-128 (2019)

      [20] A. Adomou, J. Edou, Valerie I. S. Hontonfinde, S. Massou, Exact Soliton-Like Spherical Symmetric Solutions of the Heisenberg-Ivanenko Type Nonlinear Spinor Field Equations in Gravitational Theory, Journal of Applied Mathematics and physics, 8, 1236-1254 (2020)

      [21] K. A. Bronnikov, Sergey G. Rubin, Black Holes, Cosmology and extra dimension, World Scientific Publishing Co. Pte, (2013)

      [22] Kulyabov D. J., Yu. Rybakov P.,Shikin G. N, Kink-like configuration of interaction scalar, electromagnetic and gravitational field, URSS publishers, Moscow, (1999)

      [23] I.S Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press (2007).

      [24] Nicolas VASSET, Quelques aspects des horizons de trous noirs en relativité numérique, (2009)


 

View

Download

Article ID: 31747
 
DOI: 10.14419/ijbas.v10i2.31747




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.