Improving biodegradability of polyvinyl alcohol/starch blend films for packaging applications

  • Authors

    • Elsayed Negim Wolverhampton University
    • Raichan Rakhmetullayeva Al-Faraby Kazakh National University
    • Gulzhakhan Yeligbayeva K.I. Satpaev Kazakh National Technical University
    • Perizat Urkimbaeva Al-Faraby Kazakh National University,
    • Saltanat Primzharova Al-Faraby Kazakh National University
    • Daulet Kaldybekov K.I. Satpaev Kazakh National Technical University
    • Jamal Khatib Wolverhampton University
    • Grigory Mun Al-Faraby Kazakh National University
    • Craig W.
    2014-07-19
    https://doi.org/10.14419/ijbas.v3i3.2842
  • Polyvinyl alcohol (PVA) was blended with starch (S) in presence of glacial acetic acid as crosslinking agent. The effect of blend ratio and molecular weight of PVA on the physical, thermal and mechanical properties of PVA/S blends were investigated using various techniques such as DSC, TGA, SEM, tensile strength, and solubility tests. Furthermore, biodegradability of the blend films was also studied. In addition, FTIR spectroscopy was used to check the hydrogen bonding interaction between PVA and S in the blends. The obtained results showed that the physico-mechanical properties are strongly dependent on the molecular weight and PVA content in PVA/S blends. DSC and SEM analyses of PVA/S blend showed a single glass transition temperature indicating the formation of completely miscible blends with a single phase due to the formation of hydrogen bonds between the hydroxyl groups of PVA and starch. In addition, PVA/S blend films exhibited good mechanical properties, thermal stability as compared with the pure PVA. More interestingly, the results showed enhancement in biodegradability of PVA/S blend films and particularly in moist soil, which can be exploited for manufacturing of biodegradable and environmentally friendly packaging materials at low cost.

    Keywords: Blends, Starch, PVA, Biodegradability, Mechanical Properties.

  • References

    1. Parvin, F.; Arifur Rahman, M.; Islam J.M.M.; Khan, M.A.; Saadat A.H.M., Advanced Materials Research, 123-125 (2010), 351-354. http://dx.doi.org/10.4028/www.scientific.net/AMR.123-125.351
    2. Parra, D.F.; Tadini, C.C.; Ponce, P.; Lugão, A.B., Carbohydrate Polymers, 58, (2004), 475- 481. http://dx.doi.org/10.1016/j.carbpol.2004.08.021
    3. Paul, D.R.; Barlow, J.W., Polymer, 25, 4 (1984), 487-494. http://dx.doi.org/10.1016/0032-3861(84)90207-6
    4. Negim, E.S.M.; Nurpeissova, Zh.A.; Mangazbayeva, R.A.; Khatib, J.M.; Williams, C.; Mun, G.A., Carbohydrate Polymers, 101, (2014), 415 – 422. http://dx.doi.org/10.1016/j.carbpol.2013.09.047.
    5. He, Y.; Zhu, B.; Inoue, Y., Progress in Polymer Science, 29, (2004), 1021–1051. http://dx.doi.org/10.1016/j.progpolymsci.2004.07.002.
    6. Gordon, S.H.; Imam, S.H.; Greene, R.V., Starch-based plastics-measurement of biodegradability. In J. C. Salamone (Ed.), Boca Raton: CRC Press, Polymeric materials encyclopedia, (1996), 7885–7901.
    7. Lu, D.R.; Xiao, C.M.; Xu, S.J., eXPRESS Polymer Letters, 3, (2009), 366–375.
    8. Rahmat, A.R.; Rahman, W.A.W.A.; Lee, T.S.; Yussuf, A.A., Material Science and Engineering C, 29, 8, (2009), 2370-2377.
    9. Zhifeng, Z., Carbohydrate Polymers, 54, (2003), 115–118. http://dx.doi.org/10.1016/S0144-8617(03)00074-2
    10. Chiellini, E.; Corti, A.; D'Antone, S.; Solaro R., Progress in Polymer Science, 28, (2003), 963–1014. http://dx.doi.org/10.1016/S0079-6700 (02)00149-1.
    11. Ramaraj, B., Polymer – Plastics Technology and Engineering, 45, 11, (2006), 1227–1231.
    12. Jianga, X.; Jiang, T.; Gana, L.; Zhanga, X.; Daia, H.; Zhang, X., Carbohydrate Polymers, 90, (2012), 1677– 1684. http://dx.doi.org/10.1016/j.carbpol.2012.07.050.
    13. Xuegang, L.; Jiwei, L.; Xiaoyan, L., Carbohydrate Polymers, 90, (2012), 1595– 1600. http://dx.doi.org/10.1016/j.carbpol.2012.07.036
    14. Lee, T.S.; Rahman, W.A.W.A.; Rahmat, A.R.; Mokhtar, M., Carbohydrate Polymers, 83, (2011), 303–305. http://dx.doi.org/10.1016/j.carbpol.2010.10.057.
    15. Jiang, Z.; Yunhai, M.; Lili, R.; Jin, T.; Ziqin, L.; Liang X., Carbohydrate Polymers, 76, (2009), 632–638. http://dx.doi.org/10.1016/j.carbpol.2008.11.028.
    16. Ziqin, L.; Yan, D.; Haitao, M.; Man, J.; Jin, T.; Jiang, Z., Carbohydrate Polymers, 89, (2012), 473– 477. http://dx.doi.org/10.1016/j.carbpol.2012.02.076.
    17. Olivato, J.B.; Grossmann, M.V.E.; Bilck, A.P.; Yamashita, F., Carbohydrate Polymers, 90, (2012), 159–164. http://dx.doi.org/10.1016/j.carbpol.2012.05.009.
    18. Olivato, J.B.; Grossmann, M.V.E.; Yamashita, F.; Eiras, D.; Pessan, L.A., Carbohydrate Polymers, 87, (2012), 2614–2618. http://dx.doi.org/10.1016/j.carbpol.2011.11.035.
    19. Yun, Y.; Na, Y.; Yoon, S., Journal of Polymers and the Environment, 14, 1, (2006), 71–78.
    20. Rui, S.; Jingliang, B.; Zizheng, Z.; Aichen, Z.; Dafu, C.; Xinhua, Z.; Liqun, Z.; Wei, T., Carbohydrate Polymers, 74, (2008), 763–770. http://dx.doi.org/10.1016/j.carbpol.2008.04.045.
    21. Luo, X.; Li, J.; Lin, X., Carbohydrate Polymers, 90, (2012), 1595– 1600. http://dx.doi.org/10.1016/j.carbpol.2012.07.036
    22. Shi, R.; Bi, J.; Zhang, Z.; Zhu, A.; Chen, D.; Zhou, X.; Zhang, L.; Tian, W., Carbohydrate Polymers, 74, (2008), 763–770. http://dx.doi.org/10.1016/j.carbpol.2008.04.045.
    23. Sin, L.T.; Rahman, W.A.W.A.; Rahmat, A.R.; Khan, M.I., Carbohydrate Polymers, 79, (2010), 224–226. http://dx.doi.org/10.1016/j.carbpol.2009.08.003.
    24. Negim, E.S.M.; Bahruddin, S.; Mahyuddin, R.; Idiris, M.S., J. Applied Polymer Science, 121, (2011), 8-13. http://dx.doi.org/10.1002/app.33569.
    25. Negim, E.S.M.; Bekbayeva, L.; Mun, G.A.; Zhalyrkasyn, A.A.; Idiris, M.S., World Applied Science Journal, 14, 13, (2011), 402-407.
    26. Finch, C.A., Chemical reactions and stereochemistry of polyvinyl alcohol, in: Polyvinyl alcohol, Wiley and Sons, London, (1992), p. 269.
    27. Reddy, N.; Yang, Y., Food Chemistry, (2010), 702-711. http://dx.doi.org/10.1016/j.foodchem.2009.05.050.
    28. Jayasekara, R.; Harding, I.; Bowater, I.; Christie, G.B.Y.; Lonergan, G.T., Polymer Testing, 23, (2004), 17–27. http://dx.doi.org/10.1016/S0142-9418 (03)00049-7.
    29. Xiong, H.-G.; Tang, S.-W.; Tang, H.-L.; Zou, P., Carbohydrate Polymers, 71, (2008), 263–268. http://dx.doi.org/10.1016/j.carbpol.2007.05.035.
    30. Herman, S.M.; Carolina, M.S.; Adriana, N.S.; Alexandra, A.P.M., Materials Science and Engineering: C, 28, (2008), 539–548. http://dx.doi.org/10.1016/j.msec.2007.10.088.
    31. Buléon, A.; Colonna, P.; Planchot, V.; Ball, S., Int. J. Biol. Macromol., 23, (1998), 85-112. http://dx.doi.org/10.1016/S0141-8130 (98)00040-3.
    32. Blazek, J.; Gilberta, E.P., Carbohydrate Polymers, 85, (2011), 281-293. http://dx.doi.org/10.1016/j.carbpol.2011.02.041.
    33. García, M.A.; Martino, M.N.; Zaritzky, N.E., Starch/Stärke, 52, 4, (2000), 118–124.
    34. Gontard, N.; Guilbert, S.; Cuq, J.L., J. Food Sci., 58, (1993), 206-211. http://dx.doi.org/10.1111/j.1365-2621.1993.tb03246.x.
    35. Thawien, B., Songklanakarin J. Sci. Technol., 30, (2008), 149-165.
    36. Kim, C.H.; Khil, M.S.; Kim, H.Y.; Lee, H.U.; Jahng, K.Y., Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78B, 2, (2006), 283-290.
    37. Vedala, H.; Huang, J.; Zhou, X.Y.; Kim, G.; Roy, S.; Choi, W.B., Applied Surface Science, 252, (2006), 7987. http://dx.doi.org/10.1016/j.apsusc.2005.10.021.
    38. Oh, S.H.; Kang, S.G.; Kim, E.S.; Cho, S.H.; Lee, J. H., Biomaterials, 24, 22, (2003), 4011.
    39. Yu, J.; Wang, N.; Ma, X., Starch/Starke, 57, (2005), 494–504. http://dx.doi.org/10.1002/star.200500423.
    40. Comyn, J., Adhesion Science. RSC Paperbacks. The Royal Society of Chemistry, Cambridge, UK, (1997).
    41. Schmaljohann, D., Advanced Drug Delivery Reviews, 58, (2006), 1655–1670. http://dx.doi.org/10.1016/j.addr.2006.09.020.
    42. Straub, M.; Gu, M., Opt. Lett., 27, (2002), 1824. http://dx.doi.org/10.1364/OL.27.001824.
    43. Shoji, S.; Sun, H.-B.; Kawata, S., Appl. Phys. Lett., 83, (2003), 608. http://dx.doi.org/10.1063/1.1595720.
    44. James, E.M., Physical Properties of Polymers Handbook, 2 edn. Springer Science Business Media, LLC, (2007).
    45. Yang, L.; Paulson, A.T, Food Res. Int., 55, (2000), 571-578. http://dx.doi.org/10.1016/S0963-9969 (00)00093-4.
    46. German, M.L.; Blumenfeld, A.L.; Guenin, Y.V.; Yuryev V.P.; Tolstoguzov, V.B., Carbohydrate Polymers, 18, 1, (1992), 27.
    47. Sun, S.F., Physical chemistry of macromolecules: basic principles and issues. Wiley, Inc. New York, (1994).
    48. Riyajan, S.-A.; Chaiponban, S.; Tanbumrung, K., Chemical Engineering Journal, 153, (2009), 199–205. http://dx.doi.org/10.1016/j.cej.2009.05.043.
    49. Hua, Y.; Wang, Q.; Tang, M., Carbohydrate Polymers, 96, (2013), 384– 388. http://dx.doi.org/10.1016/j.carbpol.2013.04.011.
    50. Holland, B.J.; Hay, J.N., Polymer, 42, (2001), 6775-6783. http://dx.doi.org/10.1016/S0032-3861 (01)00166-5.
    51. Siddaramaiah, S., Raj, B., & Somashekar, R., Journal of Applied Polymer Science, 91, 1, (2004), 630–635. http://dx.doi.org/10.1002/app.13194.
    52. Negim, E.S.M.; Nurpeissova, Zh.A.; Mangazbayeva, R.A.; Khatib, J.M.; Williams, C.; Mun, G.A., Carbohydrate Polymers, 101, (2014), 415 – 422. http://dx.doi.org/10.1016/j.carbpol.2013.09.047
  • Downloads

  • How to Cite

    Negim, E., Rakhmetullayeva, R., Yeligbayeva, G., Urkimbaeva, P., Primzharova, S., Kaldybekov, D., Khatib, J., Mun, G., & W., C. (2014). Improving biodegradability of polyvinyl alcohol/starch blend films for packaging applications. International Journal of Basic and Applied Sciences, 3(3), 263-273. https://doi.org/10.14419/ijbas.v3i3.2842