Naphthoquinone impairs reproductive functions in plasmodium berghei berghei-infected male swiss mice

  • Authors

    • Nkereuwem Sunday Etukudoh Federal School of Medical Laboratory Science
    • Opeyemi Oreofe Akindele Department of Physiology, University of Ibadan
    • Olufadekemi Tolulope Kunle-Alabi Department of Physiology, University of Ibadan
    • Adeyombo Folashade Bolarinwa
    2019-05-05
    https://doi.org/10.14419/ijbas.v8i1.10355
  • Naphthoquinone, Plasmodium, Male Reproductive Functions, Malaria, Sperm.
  • Abstract

    Background: Various antimalarial drugs adversely affect male reproductive functions. Naphtoquinones, a class of antimalarial drugs have been shown to effectively combat malaria parasites. However, the effects of naphtoquinone on reproductive functions remain elusive. The study determined the effects of naphthoquinone on reproductive functions of Plasmodium berghei berghei-infected male Swiss mice

    Methods: Thirty male Swiss mice were divided into 6 groups (n = 5) namely; Control, 1 mg/kg naphthoquinone, 2 mg/kg naphthoquinone, Plasmodium berghei berghei (Pbb)-infected, Pbb-infected+1 mg/kg naphthoquinone and Pbb-infected+2 mg/kg naphthoquinone. Parasitaemia was confirmed by microscopy. Naphthoquinone (i.p.) was administered for seven days following confirmation of parasitaemia. Thereafter, they were sacrificed. Serum levels of FSH, LH, testosterone and cortisol were assayed via ELISA. Sperm characteristics were evaluated by microscopy. Data were expressed as mean ± SEM and analysed using ANOVA at p<0.05.

    Results: Sperm motility reduced in the Pbb-infected compared with control. Sperm viability, motility and count reduced in naphthoquinone only groups and Pbb-infected+naphthoquinone groups compared with the control. Naphthoquinone groups and Pbb-infected alone decreased in LH and testosterone concentrations compared with the control.

    Conclusion: Naphthoquinone treatment impaired reproductive functions in Plasmodium berghei berghei-infected male Swiss mice.

     

     


  • References

    1. [1] N. Scott, S.A. Hussain, R. Martin-Hughes, F.J.I. Fowkes, C.C. Kerr, R. Pearson, D.J. Kedziora, M. Killedar R.M. Stuart, D.P. Wilson. Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations, Malaria Journal 16 (2017) 368 https://doi.org/10.1186/s12936-017-2019-1.

      [2] World Health Organisation. World malaria report. Geneva: World Health Organization; 2015.

      [3] M. Cunha-Rodrigues, S. Portugal, M. Febbraio, M.M. Mota. Infection by and protective immune responses against Plasmodium berghei ANKA are not affected in macrophage scavenger receptors A deficient mice. BMC Microbiology 6 (2006) 73. https://doi.org/10.1186/1471-2180-6-73.

      [4] G. Kokwaro. Ongoing challenges in the management of malaria. Malaria Journal 8 (2009) S2. https://doi.org/10.1186/1475-2875-8-S1-S2.

      [5] R. Lu, Culletin, M. Zhang, A. Ramaprasad, L. von Seidlein Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa. The New England Journal of Medicine 376 (2017) 991-993. https://doi.org/10.1056/NEJMc1612765.

      [6] A. Sharma, I.O. Santos, P. Gaur, V.F. Ferreira, C.R. Garcia, D.R. Rocha. Addition of thiols to o-quinone methide: new 2-hydroxy- 3-phenylsulfanylmethyl [1], [4] naphthoquinones and their activity against the human malaria parasite Plasmodium falciparum (3D7). European Journal of Medicinal Chemistry 59 (2013) 48-53. https://doi.org/10.1016/j.ejmech.2012.10.052.

      [7] C.G. De Mouraa, F.S. Emerya, C. Neves-Pintoa, M.F.R. Pintoa, A.P. Dantasb, K. Salomão, S.L. de Castrob, A.V. Pintoa. Trypanocidal Activity of Isolated Naphthoquinones from Tabebuia and Some Heterocyclic Derivatives: A Review from an Interdisciplinary Study. The Journal of the Brazilian Chemical Society 12, (2001) 325-338. https://doi.org/10.1590/S0103-50532001000300003.

      [8] W. Qian, H. Shich Naphthoquinone-induced cataract mice possible involvement of Ca2+ Dieased calpain activation. Journal of Ocular Pharmacology and Therapeutics 17 (2001) 383-92. https://doi.org/10.1089/108076801753162799.

      [9] F.E.G. Cox. Major models in malaria research: rodent. In Malaria: principles and practice of malariology (ed. W. H. Wernsdorfer & I. McGregor), 1988; 1503-1543.

      [10] I. Landau, P. Gautret. Malaria: Parasite Biology, Pathogenesis and Protection, edited by I. W. Sherman. Washington DC: American Society for Microbiology. 1998; 401-417.

      [11] A.I. Vawva, G. Saade. Effects of chloroquine on male infertility in wistar rats. Suid Afr. Lydskrit Wetenskap, 83(1987) 489-491.

      [12] M.R. Sairam. Drug Effects on Lutropin Action. In: Structure and Function of Gonadotrophins, McKerns, K.W. (Ed.). Plenum, New York, (1978) 274-294. https://doi.org/10.1007/978-1-4684-3414-9_12.

      [13] E.U. Nduka. Inhibition of testosterone secretion in the rat testes by chloroquine. IRCS. Journal of Medical Science 14 (1986) 14:1185.

      [14] A. Agarwal, A. Mulgund, A. Hamada, M.R. Chyatte. A unique view on male infertility around the globe. Reproductive Biology and Endocrinology 13 (2015) 37. https://doi.org/10.1186/s12958-015-0032-1.

      [15] W. Peters. Rational methods in the search for antimalarial drugs. Trans Roy Soc Trop Med Hyg 61 (1967) 400–410. https://doi.org/10.1016/0035-9203(67)90015-6.

      [16] J.M. Makinde, P.O. Obih Screening of Morinda lucida leaf extract for antimalaria action on Plasmodium berghei berghei berghei in mice. African Journal of Medicine and Medical Sciences 14 (1985) 59–63.

      [17] A.T. Farag, M.H. Eweidah, A.M. El-Okazy. Reproductive toxicology of acephate in male mice. Reproductive Toxicology 14 (2000) 457-62. https://doi.org/10.1016/S0890-6238(00)00094-0.

      [18] J.F. Trape, G. Pison, M.P. Preciosi, C. Enel, Desgrees du Delaunagv, B. Samb, F. Simondon. Impact of chloroquine resistance on malaria mortality Comptes Rendus de l'Académie des Sciences 3 (1998) 689-697. https://doi.org/10.1016/S0764-4469(98)80009-7.

      [19] Rita de Cassia da Silveira esa, Martha de Oliveira Guerra Reproductive toxicity of Lapachol in Ault Male wistar rats submitted to short-term treatment. Department de Biologica Universidade Federal de juiz de Fora, MG Brasil. 2007.

      [20] R.D. Dinnen, K. Ebisuzaki. The search for novel anticancer agents: A differentiation-based assay and analysis of folklore product. Anticancer Research 17 (1997) 1027-1033.

      [21] C.F. Santana, O.G. Lima, I.L. Dalbuqurque, A.L. Lacerda, D.G. Martins. Observacoes sobre as propriedades antitunorais e toxicotogicas do extrato do liber e de alguns componentes do cerne do pau dorco. Rev. Inst. Antibiot. 8 (1968) 89-94.

      [22] M.R. Kumar, K. Aithal, B.N. Rao, N. Udupa, B.S. Rao. Cytotoxic, genotoxic and oxidative stress induced by 1,4-naphthoquinone in B16F1 melanoma tumor cells. Toxicology in Vitro. 23 (2009) 242-50. https://doi.org/10.1016/j.tiv.2008.12.004.

      [23] K. Uematsu. Testicular changes of rats induced by nitrofurazone. A light and electron microscopic study. Medical Journal of Osaka University 16 (1966) 287-320.

      [24] W.H. Walker, “Non-Classical Actions of Testosterone and Spermatogenesis.†Philosophical transactions of the Royal Society of London. Series B, Biological sciences RoyalSociety (Great Britain) 365.1546 (2010) 1557–1569.

      [25] C. Wellwood, R. Sean. “Adrenal and Thyroid Supplementation Outperforms Nutritional Supplementation and Medications for Autoimmune Thyroiditis.†Integrative Medicine: A Clinician’s Journal 13.3 (2014): 41–47. Print.

  • Downloads

  • How to Cite

    Sunday Etukudoh, N., Oreofe Akindele, O., Tolulope Kunle-Alabi, O., & Folashade Bolarinwa, A. (2019). Naphthoquinone impairs reproductive functions in plasmodium berghei berghei-infected male swiss mice. International Journal of Basic and Applied Sciences, 8(1), 1-4. https://doi.org/10.14419/ijbas.v8i1.10355

    Received date: 2018-03-19

    Accepted date: 2018-04-16

    Published date: 2019-05-05