Multiplication theorems for multi-variable and multi-index Bessel functions

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this article, we derive multiplication theorems for the 3-variable 2-parameter Bessel functions $J_n(\lambda x,\mu y,\nu z;\tau_1,\tau_2)$ and 2-index 5-variable 3-parameter Bessel functions$J_{m,n}(\lambda x,\mu y,\nu z,\eta w,\beta h;\tau_1,\tau_2,\tau_3)$ using the generating function method. Further, we derive multiplication theorems for functions related to $J_n(\lambda x,\mu y,\nu z;\tau_1,\tau_2)$ and$J_{m,n}(\lambda x,\mu y,\nu z,\eta w,\beta h;\tau_1,\tau_2,\tau_3)$. Furthermore, we establish a multiplication theorem for N-index Bessel functions $J_{m_1,m_2.....m_N}(\lambda x)$.

 

View

Download

Article ID: 934
 
DOI: 10.14419/ijamr.v2i3.934




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.