Solving volterra integral equation via nonlinear programming

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    In this paper we propose an approach to find approximate solution to the nonlinear Volterra integral equation of the second type through a nonlinear programming technique by firstly converting the integral equation into a least square cost function as an objective function for an unconstrained nonlinear programming problem which solved by a nonlinear programming technique (The preconditioned limited- memory quasi-Newton conjugates, gradient method) and as far as we read this is a new approach in the ways of solving the nonlinear Volterra integral equation. We use Maple 11 software as a tool for performing the suggested steps in solving the examples.

  • Keywords

    Volterra integral equations; Optimization ; Non linear programming

  • References

      [1] A.-M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, springer, 2011.
      [2] B. B. E. Hashemizadeha, K. Maleknejada, Hybrid functions approach for the nonlinear volterra-fredholm integral equations, Procedia Computer Science 3 (2011) 1189–1194.
      [3] R. E. K. Maleknejad, E. Hashemizadeh, A new approach to the numerical solution of volterra integral equations by using bernstein’s approximation, Communications in Nonlinear Science and Numerical Simulation 16 (2011) 647–655.
      [4] B. N. M. Subhra Bhattacharya, Use of bernstein polynomials in numerical solutions of volterra integral equations, Applied Mathematical Sciences 2 (2008) 1773 – 1787.
      [5] A. Shirin, M. S. Islam, Numerical solutions of fredholm integral equations using bernstein.
      [6] A. Shahsavaran, Computational method to solve nonlinear integral equations using block pulse functions by collocation method, Applied Mathematical Sciences 5 (2011) 3211 – 3220.
      [7] E. A. R. Azzedine Bellour, Numerical solution of first kind integral equations by using taylor polynomials.
      [8] W. Wang, A mechanical algorithm for solving the volterra integral equation, Applied Mathematics and Computation 172 (2006) 1323–1341.
      [9] J. A. Othman, R. S. Kareem, Solving nonlinear fredholm integral equation of the second type via nonlinear programming techniques, International Journal of Applied Mathematics 29 (2012) 1285–1262.
      [10] A. T. Lonseth, Approximate solution of fredholm-type integral equations, Bulletin of the American Mathematical Society 60 (1954) 415– 430.
      [11] A. J. Jerri, Introduction to Integral Equations with Applications, John Wiley Sons Inc, 1999.
      [12] M. K. H. M. K. A. L. N. A. M. M. Rahman, M. A. Hakim, Numerical solutions of volterra integral equations of second kind with the help of chebyshev polynomials, Annals of Pure and Applied Mathematics 1 (2012) 158–167.
      [13] M. T. K. M. Ghasemi, E. Babolian, Numerical solutions of the nonlinear volterra-fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput. 188 (2007) 446–449.
      [14] C. Minggen, D. Hong, Representation of exact solution for the nonlinear volterra-fredholm integral equations, Appl. Math. Comput. 182 (2006) 1795– 1802.
      [15] M.Razzaghi, Y.ordokhani, Solution of nonlinear volterro-hammerstien integral equation via rationalized haar function, Mathematical Problem in Engineering 7 (2001) 205–219.
      [16] S. Yalcinbas, Taylor polynomial solutions of nonlinear volterrafredholm integral equations, Appl. Math. Comput. 127 (2002) 195– 206.
      [17] M. Zarebnia, A numerical solution of nonlinear volterra-fredholm integral equation, Journal of Applied Analysis and Computation 3 (2013) 95–104.
      [18] M. R. Sepehrian, Single-term walsh series method for the volterra integrodifferential equations, Engi. Anal. Boun. Elem. 28 (2004) 1315–1319.
      [19] M. Rashed, Numerical solution of functional differential, integral and integro-differential equations, Appl. Numer. Math. 156 (2004) 485–492.
      [20] R. M. H. Brunner, A. Makroglou, Mixed interpolation collocation methods for first and second volterra integro-differential equations with periodic solution, Appl. Numer. Math. 23 (1997) 381–402.
      [21] S. X. E. Deeba, S.A. Khuri, An algorithm for solving a nonlinear integro-differential equation, Appl. Numer. Math. 115 (2000) 123–131.
      [22] W. P. Gerald. C. F., Applied Numerical Analysis, Addison Wesley, 1984.
      [23] J. N. . S. J. Wright, Numerical Optimization, Springer-Verlag, 1999.
      [24] W. W.Hager, H. Zhang, The limited memory conjugate gradient method, SIAM J. OPTIM. 23 (2013) 2150 – 2168.
      [25] A. S. Igor Griva, Stephen G. Nash, Linear and Nonlinear Optimization, 2nd Edition, SIAM BOOK, 2008.




Article ID: 6724
DOI: 10.14419/ijamr.v5i4.6724

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.