Solving volterra integral equation via nonlinear programming

Authors

  • Jamal Othman

    University of Information Technology& Communication

Received date: September 10, 2016

Accepted date: October 11, 2016

Published date: November 15, 2016

DOI:

https://doi.org/10.14419/ijamr.v5i4.6724

Keywords:

Volterra integral equations, Optimization, Non linear programming

Abstract

In this paper we propose an approach to find approximate solution to the nonlinear Volterra integral equation of the second type through a nonlinear programming technique by firstly converting the integral equation into a least square cost function as an objective function for an unconstrained nonlinear programming problem which solved by a nonlinear programming technique (The preconditioned limited- memory quasi-Newton conjugates, gradient method) and as far as we read this is a new approach in the ways of solving the nonlinear Volterra integral equation. We use Maple 11 software as a tool for performing the suggested steps in solving the examples.

References

  1. [1] A.-M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, springer, 2011.
    [2] B. B. E. Hashemizadeha, K. Maleknejada, Hybrid functions approach for the nonlinear volterra-fredholm integral equations, Procedia Computer Science 3 (2011) 1189–1194.
    [3] R. E. K. Maleknejad, E. Hashemizadeh, A new approach to the numerical solution of volterra integral equations by using bernstein’s approximation, Communications in Nonlinear Science and Numerical Simulation 16 (2011) 647–655.
    [4] B. N. M. Subhra Bhattacharya, Use of bernstein polynomials in numerical solutions of volterra integral equations, Applied Mathematical Sciences 2 (2008) 1773 – 1787.
    [5] A. Shirin, M. S. Islam, Numerical solutions of fredholm integral equations using bernstein.
    [6] A. Shahsavaran, Computational method to solve nonlinear integral equations using block pulse functions by collocation method, Applied Mathematical Sciences 5 (2011) 3211 – 3220.
    [7] E. A. R. Azzedine Bellour, Numerical solution of first kind integral equations by using taylor polynomials.
    [8] W. Wang, A mechanical algorithm for solving the volterra integral equation, Applied Mathematics and Computation 172 (2006) 1323–1341.
    [9] J. A. Othman, R. S. Kareem, Solving nonlinear fredholm integral equation of the second type via nonlinear programming techniques, International Journal of Applied Mathematics 29 (2012) 1285–1262.
    [10] A. T. Lonseth, Approximate solution of fredholm-type integral equations, Bulletin of the American Mathematical Society 60 (1954) 415– 430.
    [11] A. J. Jerri, Introduction to Integral Equations with Applications, John Wiley Sons Inc, 1999.
    [12] M. K. H. M. K. A. L. N. A. M. M. Rahman, M. A. Hakim, Numerical solutions of volterra integral equations of second kind with the help of chebyshev polynomials, Annals of Pure and Applied Mathematics 1 (2012) 158–167.
    [13] M. T. K. M. Ghasemi, E. Babolian, Numerical solutions of the nonlinear volterra-fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput. 188 (2007) 446–449.
    [14] C. Minggen, D. Hong, Representation of exact solution for the nonlinear volterra-fredholm integral equations, Appl. Math. Comput. 182 (2006) 1795– 1802.
    [15] M.Razzaghi, Y.ordokhani, Solution of nonlinear volterro-hammerstien integral equation via rationalized haar function, Mathematical Problem in Engineering 7 (2001) 205–219.
    [16] S. Yalcinbas, Taylor polynomial solutions of nonlinear volterrafredholm integral equations, Appl. Math. Comput. 127 (2002) 195– 206.
    [17] M. Zarebnia, A numerical solution of nonlinear volterra-fredholm integral equation, Journal of Applied Analysis and Computation 3 (2013) 95–104.
    [18] M. R. Sepehrian, Single-term walsh series method for the volterra integrodifferential equations, Engi. Anal. Boun. Elem. 28 (2004) 1315–1319.
    [19] M. Rashed, Numerical solution of functional differential, integral and integro-differential equations, Appl. Numer. Math. 156 (2004) 485–492.
    [20] R. M. H. Brunner, A. Makroglou, Mixed interpolation collocation methods for first and second volterra integro-differential equations with periodic solution, Appl. Numer. Math. 23 (1997) 381–402.
    [21] S. X. E. Deeba, S.A. Khuri, An algorithm for solving a nonlinear integro-differential equation, Appl. Numer. Math. 115 (2000) 123–131.
    [22] W. P. Gerald. C. F., Applied Numerical Analysis, Addison Wesley, 1984.
    [23] J. N. . S. J. Wright, Numerical Optimization, Springer-Verlag, 1999.
    [24] W. W.Hager, H. Zhang, The limited memory conjugate gradient method, SIAM J. OPTIM. 23 (2013) 2150 – 2168.
    [25] A. S. Igor Griva, Stephen G. Nash, Linear and Nonlinear Optimization, 2nd Edition, SIAM BOOK, 2008.

Downloads

How to Cite

Othman, J. (2016). Solving volterra integral equation via nonlinear programming. International Journal of Applied Mathematical Research, 5(4), 192-196. https://doi.org/10.14419/ijamr.v5i4.6724

Received date: September 10, 2016

Accepted date: October 11, 2016

Published date: November 15, 2016