An efficient numerical technique for the solution of nonlinear heat equation via spectral method

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Nonlinear wave equations are more difficult to study mathematically, and no general analytical method exists for their solution. It is found that the Exponential Time Differencing (ETD) scheme requires the steps to achieve a given accuracy, offers a speedy method in calculation time, and has exceptional stability properties in solving a nonlinear equation. This article solves the diagonal example of nonlinear heat equation via the exponential time difference Runge-Kutta 4 methods (ETDRK4). Implementation of the method is proposed by short Matlab programs.


  • Keywords


    Exponential Methods; Integration Factor Methods; Exponential Time Differencing Methods; Runge-Kutta Method.

  • References


      [1] S. Cox, P. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics. 176(2) (2002) 430-455. http://dx.doi.org/10.1006/jcph.2002.6995.

      [2] R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion, Electromagnetic Compatibility, IEEE Transactions on. 36(1) (1994) 32-39.

      [3] P.G. Petropoulos, Analysis of exponential time-differencing for FDTD in lossy dielectrics. Antennas and Propagation, IEEE Transactions on. 45(6) (1997) 1054-1057. http://dx.doi.org/10.1109/8.585755.

      [4] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. Journal of Computational Physics. 213(2) (2006) 748-776. http://dx.doi.org/10.1016/j.jcp.2005.08.032.

      [5] W. Wright, A partial history of exponential integrators. Department of Mathematical Sciences, NTNU, Norway, 2004.

      [6] J.D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM Journal on Numerical Analysis. 4(3) (1967) 372-380. http://dx.doi.org/10.1137/0704033.

      [7] H. Berland, B. Owren, B. Skaflestad, Solving the nonlinear Schrodinger equation using exponential integrators, Modeling, Identification and Control. 27(4) (2006) 201-217. http://dx.doi.org/10.4173/mic.2006.4.1.

      [8] A.K. Kassam, High order time stepping for stiff semi linear partial differential equations, University of Oxford, 2004.

      [9] H. Berland, B. Skaflestad, W.M. Wright, EXPINT-A MATLAB package for exponential integrators. ACM Transactions on Mathematical Software (TOMS). 33(1) (2007) 4. http://dx.doi.org/10.1145/1206040.1206044.

      [10] A.K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM Journal on Scientific Computing. 26(4) (2005) 1214-1233. http://dx.doi.org/10.1137/S1064827502410633.

      [11] S. Krogstad Generalized integrating factor methods for stiff PDEs. Journal of Computational Physics. 203(1) (2005) 72-88. http://dx.doi.org/10.1016/j.jcp.2004.08.006.

      [12] C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. Electronic Transactions on Numerical Analysis. 29 (2008) 116-135.

      [13] Z.A. Aziz, N. Yaacob, M. Askaripour, M. Ghanbari, Fourth-Order Time Stepping for Stiff PDEs via Integrating Factor. Advanced Science Letters. 19(1) (2013) 170-173. http://dx.doi.org/10.1166/asl.2013.4667.

      [14] Z.A. Aziz, M. Askaripour, M. Ghanbari, a New Review of Exponential Integrator, USA: CreateSpace 106, 2012.

      [15] J.M. Hyman, B. Nicolaenko, The Kuramoto-Sivashinsky equation: a bridge between PDE's and dynamical systems. Physica D: Nonlinear Phenomena. 18(1) (1986) 113-126.

      [16] B. Nicolaenko, B. Scheurer, R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors. Physica D: Nonlinear Phenomena. 16(2) (1985) 155-183. http://dx.doi.org/10.1016/0167-2789(85)90056-9.

      [17] M. Askaripour, Z.A. Aziz, M. Ghanbari, and H. Panj mini, A Note on Fourth-Order Time Stepping for Stiff PDE via Spectral Method. Applied Mathematical Sciences.7 (38) (2013) 1881-1889.

      [18] Z.A. Aziz, N. Yaacob, M. Askaripour, M. Ghanbari, A review for the time integration of semi-linear stiff problems. Journal of Basic & Applied Scientific Research. 2(7) (2012) 6441-6448.

      [19] M. A. Lahiji, Z. A. Aziz, Numerical Solution for Kawahara Equation by Using Spectral Methods, IERI Procedia. 10 (2014) 259-265. http://dx.doi.org/10.1016/j.ieri.2014.09.086.

      [20] M. A. Lahiji, Z. A. Aziz,Numerical Solution of the Nonlinear Wave Equation via Fourth-Order Time Stepping, In Applied Mechanics and Materials.729 (2015) 213-219. http://dx.doi.org/10.4028/www.scientific.net/AMM.729.213.

      [21] Z.A. Aziz, N. Yaacob, M. Askaripour, M. Ghanbari, A review of the time discretization of semi linear parabolic problems. Research Journal of Applied Sciences, Engineering and Technology. 4(19) (2012) 3539-3543.

      [22] Z.A. Aziz, N. Yaacob, M. Askaripour, M. Ghanbari, Split-Step Multi-Symplectic Method for Nonlinear Schrödinger Equation, Research Journal of Applied Sciences, Engineering and Technology. 4(19) (2012) 3858-3864.

      [23] Z.A. Aziz, N. Yaacob, M. Askaripour, M. Ghanbari, A Numerical Approach for Solving a General Nonlinear Wave Equation, Research Journal of Applied Sciences, Engineering and Technology. 4(19) (2012) 3834-3837.

      [24] M. Askaripour, Z.A. Aziz, M. Ghanbari, A. Farzamnia, Efficient Semi-Implicit Schemes for Stiff Systems via Newton's Form, Journal of Optoelectronics and Biomedical Materials.5 (3) (2013) 43-50.


 

View

Download

Article ID: 4591
 
DOI: 10.14419/ijamr.v4i3.4591




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.