k-cordial labeling of fan and double fan

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    We discuss here k-cordial labeling of fans. We prove that fans \(f_{n}\) are k-cordial for all k. We divide the proof of the result into two parts namely odd k and even k. Moreover we prove that double fans \(Df_{n}\) are k-cordial for all k and \(n=\frac{k+1}{2}\). The present authors are motivated by the research article entitled as 'A-cordial graphs' by A Hovey. 


  • Keywords


    Abelian Group; k-Cordial Labeling; Fan; Double fan.

  • References


      [1] L. W. Beineke and S. M. Hegde, "Strongly multiplicative graphs", Discuss. Math. Graph Theory, Vol.21, (2001), pp.63-75.

      [2] J A Gallian, "A dynamic survey of graph labeling", The Electronics Journal of Combinatorics, Vol.17, (2014).

      [3] J Gross and J Yellen, Handbook of graph theory, CRC Press, (2004).

      [4] M. Hovey, "A-cordial graphs", Discrete Math., Vol.93, (1991), pp. 183-194.

      [5] K. K. Kanani and M. V. Modha, "7-cordial labeling of standard graphs", Internat. J. Appl. Math. Res., Vol.3(4), (2014), pp. 547-560.

      [6] K. K. Kanani and M. V. Modha, "Some new families of 5-cordial graphs", Int. J. Math. Soft Comp., Vol.4(1), (2015),pp. 129-141.

      [7] K. K. Kanani and N. B. Rathod, "Some new 4-cordial graphs", J. Math. Comput. Sci., Vol.4(5), (2014), pp. 834-848.

      [8] R. Tao, " On k-cordiality of cycles, crowns and wheels", Systems Sci. Math. Sci., Vol.11, (1998), pp. 227-229.

      [9] M. Z. Youssef, "On k-cordial labeling", Australas. J. Combin., Vol.43, (2009), pp. 31-37.


 

View

Download

Article ID: 4530
 
DOI: 10.14419/ijamr.v4i2.4530




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.