Modified Taylor solution of equation of oxygen diffusion in a spherical cell with Michaelis-Menten uptake kinetics

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    This work presents the application of a modified Taylor method to obtain a handy and easily computable approximate solution of the nonlinear differential equation to model the oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. The obtained solution is fully symbolic in terms of the coefficients of the equation, allowing to use the same solution for different values of the maximum reaction rate, the Michaelis constant, and the permeability of the cell membrane. Additionally, the numerical experiments show the high accuracy of the proposed solution, resulting 1.658509453Å~10−15 as the lowest mean square error for a set of coefficients. The straightforward process to obtain the solution shows that the modified Taylor method is a handy alternative to a more sophisticated method because does not involve the solving of differential equations or calculate complicated integrals.


  • Keywords


    Taylor method; Power series method; Boundary valued problems; Approximate solutions.

  • References


      [1] S. H. Lin, ”Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics”, J. Theor. Biol., Vol.60, (1976),pp.449–457.

      [2] D.L.S. McElwain, ”A re-examination of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics”, J. Theor. Biol., Vol.71, (1978), pp.255–263.

      [3] H. Vazquez-Leal, B. Benhammouda, U.A. Filobello-Nino, A. Sarmiento-Reyes, V.M. Jimenez-Fernandez, A. Marin-Hernandez, A.L. Herrera-May, A. Diaz-Sanchez, J. Huerta-Chua, ”Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals”, Springer Plus, Vol.3, No.160, (2014), pp.1–7.

      [4] P. Hiltmann, P. Lory, ”On oxygen diffusion in a spherical cell with Michaelis Menten oxygen uptake kinetics”, Bull. Math. Biol., Vol.45, No.5, (1983), pp.661–664.

      [5] M. J. Simpson, A. J. Ellery, ”An analytical solution for diffusion and nonlinear uptake of oxygen in a spherical cell”, Appl. Math. Model., Vol.36, (2012), pp.3329–3334.

      [6] A.M.Wazwaz, ”The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models”, Commun. Nonlinear Sci. Numer. Simulat., Vol.16, (2011), pp.3881–3886.

      [7] R. Rach, A.M.Wazwaz, J. S. Duan , ”A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics”, International Journal of Biomathematics, Vol.7, No.2, (2014), pp.1–12.

      [8] R. Rach, J. S. Duan, A.M.Wazwaz, ”Solving coupled LaneEmden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method”, J. Math. Chem., Vol.52, (2014), pp.255–267.

      [9] A. M. Wazwaz, R. Rach, J. S. Duan, ”Adomian decomposition method for solving the Volterra integral form of the LaneEmden equations with initial values and boundary conditions”, Appl. Math. Comput., Vol.219, (2013), pp.5004-5019.

      [10] A. M. Wazwaz, R. Rach, J. S. Duan, ”A study on the systems of the Volterra integral forms of the LaneEmden equations by the Adomian decomposition method”, Math. Models Methods Appl. Sci., Vol.37, (2014), pp.10-19.

      [11] G. Adomian, Nonlinear Stochastic Operator Equations, Academic, (2014).

      [12] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, (1994).

      [13] G. Adomian, R. Rach, ”Inversion of nonlinear stochastic operators”, J. Math. Anal. Appl., Vol.91, (1983), pp.39–46.

      [14] G.A. Sod, ”A numerical study of oxygen diffusion in a spherical cell with the Michaelis-Menten oxygen uptake kinetics”, J. Math. Biol., Vol.24, (1986), pp.279–289.


 

View

Download

Article ID: 4273
 
DOI: 10.14419/ijamr.v4i2.4273




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.