• Abstract
• Keywords
• References
• PDF
• Abstract

In this paper we have conceived an original deterministic model for the propagation of Covid-19 dynamics. Mathematical analysis of the model has been done and reveals the existence of a single disease-free equilibrium witch is locally and asymptotically stable. The basic reproduction number  has also been evaluated and gives an idea on the disease evolution in the world. This is because if , the disease disappears whereas if , the disease remains in the population. Numerical results are consistent with the theoretical results and highlight the effect of the infectious contact rate α on the evolution of the pandemic.

• Keywords

Modeling, Transmission, Simulation, Pandemic, COVID-19

• References

[1] A. Deslandes, V. Berti, Y. Tandjaoui-Lambotte, Chakib Alloui, E. Carbonnellea, J.R. Zahar, S. Brichler, Yves Cohenb SARS-CoV-2 was already spreading in France in late December 2019, International Journal of Antimicrobial Agents 55 (2020) 106006.

[2] Abba Mahamane Oumarou, Saley Bisso Modelling and simulating a transmission of Covid-19 disease: Niger Republic case, EJPAM, Vol. 13, No. 3, 2020, 549-566.

[3] Alemu Geleta Wedajo, Boka Kumsa Bole, Purnachandra Rao Koya The Impact of Susceptible Human Immigrants on the Spread and Dynamics of Malaria TransmissionAmerican Journal of Applied Mathematics. Vol. 6, No. 3, 2018, pp. 117-127. doi: 10.11648/j.ajam.20180603.13

[4] Ayodeji. O. Adebiyi Mathematical modeling of the population dynamics of tuberculosis

[5] Blaise SOME Identification, contrôle optimal et optimisation dans les systèmes différentiels compartimentaux, doctorat de 3 e cycle, Université Pierre et Marie Curie (Paris VI), 1984.

[6] BOUZID Allal El Moubarek Méthode de résolution des équations différentielles ODE, République Algérienne Démocratique et Populaire, Ecole Normale Supérieurs d’Enseignement Technique, 2008-2009

[7] Brian Stout Méthodes numériques de résolution d’équations différentielles; Université de Provence, Institut Fresnel, Fevrier 2007.

[8] Centre des Opérations de Réponses aux Urgences Sanitaires (CORUS) Direct.Coronavirus: 01 nouveau cas confirmé à la date du 02 juin 2020 https://lefaso.net/spip.php?page=direct.coronavirus, consulté le 12 juin 2020.

[9] Eric Goucalvès Résolution numérique, discrétisation des EDP et EDO, Institut National Polytechnique de Grénoble, septembre 2005.

[10] Famane KAMBIRE, Elisée GOUBA, Sadou TAO, Blaise SOME Mathematical analysis of an immune-structred chikungunya transmission model, European Journal of pure and Applied Mathematics Vol. 12, No. 4, 2019, 1533-1552

[11] Gilles CHRISTOL, Anne COT, Charles-Michel MARLE Calcul Différentiel

[12] G. Chowell, N.W. Hengartner,C. Castillo-Chavez, P.W. Fenimore, J.M. Hyman The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda,Journal of Theoretical Biology 229 (2004) 119–126

[13] Famane KAMBIRE Modélisation mathématique par analyse compartimentale de la dynamique de transmission de deux maladies infectieuses: le chikungunya et le paludisme

[14] Flavia Riccardo and al Epidemiological characteristics of COVID-19 cases in Italy and estimates of the reproductive numbers one month into the epidemic, doi: 10.1101/2020.04.08.20056861.

[15] Gergely Röst, Ferenc A. Bartha and al Early Phase of the COVID-19 Outbreak in Hungary and Post-Lockdown Scenarios , Viruses 2020, 12, 708

[16] Gergely Röst, Ferenc A. Bartha and al Early Phase of the COVID-19 Outbreak in Hungary and Post-Lockdown Scenarios.

[17] Jean-Pierre DEMAILLY Analyse Numérique et Equations Différentielles.

[18] Ministère de la Santé - Burkina Faso http://www.sante.gov.bf/, consulté le 4 mai 2020.

[19] Ministère de la Santé - Burkina Faso Analyse des implications des mesures de gestion du COVID-19 au Burkina Faso, 13 avril 2020 https://lefaso.net, consulté le 5 mai 2020.

[21] Ndéye Léna TENDENG Etude de modèles de transmission de la schistosomiase: Analyse mathématique, reconstruction des variables d’état et estimation des paramètres, thèse de doctorat soutenue le 23 mai 2013 à Metz.

[22] Pascal Zongo Modélisation mathématique de la dynamique de la transmission du paludisme,thèse de doctorat en mathématiques appliquées et calcul scientifique, Université de Ouagadougou, 2009.

[23] P. Van den Driessche, James Watmough Reproduction numbers and sub-threshold endemic equilibria for compartimental models of disease transmission, Mathematical Biosciences 180 (2002) 29-48.

[24] Péter Boldog, Tamas Tekeli, Zsolt Vizi, Attila Dénes, Ferenc A. Bartha and Gergely Rost Risk Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China, Journal of Clinical Medicine, volume 9, 2020/02

[25] S.M. Garba , A.B. Gumel, M.R. Abu Bakar Backward bifurcations in dengue transmission dynamics, Mathematical Biosciences 215 (2008) 11–25.

[26] Shweta Sankhwar, Narender Kumar, Ravins Dohare Mathematical model of transmission dynamics with mitigation and health measures for SARS-CoV-2 infection in European countries, april 13, 2020.

[27] Wakatsera Coronavirus au Burkina www.wakatsera.com consulté le 16/10/2020.

[28] Wikipédia Démographie du Burkina Faso https://fr.wikipedia.org/wiki/Dconsulté le 9 juin 2020.

[29] Woldegebrie A. Woldegerima1, · Miranda I. Teboh-Ewungkem ·Gideon A. Ngwa1 The Impact of Recruitment on the Dynamics of an ImmuneSuppressed Within-Human–Host Model of the Plasmodium falciparum Parasite, Society for Mathematical Biology, 2018

[30] Worldometers COVID-19 Coronavirus Pandemic https://www.worldometers.info/coronavirus/ Consulté le 23/09/2020.

[31] World Health Organisation (WHO) COVID-19 Weekly Epidemiological Update