The Role of Quantum Chemistry in Complex Molecular Systems
-
https://doi.org/10.14419/z3kbt082
Received date: November 21, 2025
Accepted date: January 9, 2026
Published date: January 16, 2026
-
Density Functional Theory; Transition-Metal Chemistry; Multireference Methods; Bond Dissociation; Non-Adiabatic Phenomena; Magnetic Coupling; and Excited States -
Abstract
Quantum chemistry provides a rigorous theoretical framework for describing molecular behavior at the electronic scale, offering capabilities that fundamentally surpass the explanatory and predictive limits of classical and semi-empirical models. Unlike classical approaches, which treat electrons implicitly or rely on parameterized interactions, quantum chemical methods explicitly resolve electronic structure, enabling reliable predictions of molecular geometries, reaction energetics, and electronic reactivity in chemically complex systems. This study critically examines the performance and limitations of quantum chemistry across four particularly challenging domains: transition-metal complexes, bond dissociation phenomena, near-degenerate electronic states, and magnetic or electronically excited systems. While Density Functional Theory (DFT) offers an efficient balance between accuracy and computational cost, its reliability can degrade in systems with strong electron correlation, necessitating the use of multi-reference and wave function-based methods. Through this comparative analysis, the study demonstrates how advances in quantum chemical theory and computation have significantly improved predictive accuracy, deepened understanding of chemical bonding and reactivity, and enabled practical progress in catalysis, spectroscopy, materials science, and photo-physics while also highlighting the methodological trade-offs that continue to define the field.
-
References
- Field, M. J., Bash, P. A., & Karplus, M. (1990). A combined quantum mechanical and molecular mechanical potential for molecular dynamics simu-lations. Journal of Computational Chemistry, 11, 700–733. https://doi.org/10.1002/jcc.540110605.
- Friesner, R. A., & Guallar, V. (2005). Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annual Review of Physical Chemistry, 56, 389–427. https://doi.org/10.1146/annurev.physchem.55.091602.094410.
- Raghavachari, K., & Anderson, J. B. (1996). Electron correlation effects in molecules. The Journal of Physical Chemistry, 100, 12960–12973. https://doi.org/10.1021/jp953749i.
- Ramachandran, K. I., Deepa, G., & Namboori, K. (2008). Computational Chemistry and Molecular Modelling: Principles and Applications. Berlin: Springer.
- Senn, H. M., & Thiel, W. (2007). QM/MM studies of enzymes. Current Opinion in Chemical Biology, 11, 182–187. https://doi.org/10.1016/j.cbpa.2007.01.684.
- Senn, H. M., & Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie International Edition, 48, 1198–1229. https://doi.org/10.1002/anie.200802019.
- Staib, A., & Borgis, D. (1995). Molecular dynamics simulation of an excess charge in water using mobile Gaussian orbitals. The Journal of Chemi-cal Physics, 103, 2642–2655. https://doi.org/10.1063/1.470524.
- Frontiers in Chemistry Editorial Office. (2018). Frontiers in Chemistry, 6, Article 357. https://www.frontiersin.org/articles/10.3389/fchem.2018.00357.
- Stefanovich, E. V., & Truong, T. N. (1996). Embedded density functional approach for calculations of adsorption on ionic crystals. The Journal of Chemical Physics, 104, 2946–2955. https://doi.org/10.1063/1.471115.
- Timmins, A., Saint-André, M., & de Visser, S. P. (2017). Understanding how prolyl-4-hydroxylase structure steers a ferryl oxidant toward scission of a strong C–H bond. Journal of the American Chemical Society, 139, 9855–9866. https://doi.org/10.1021/jacs.7b02839.
- Tuñón, I., Martins-Costa, M. T. C., Millot, C., & Ruiz-López, M. F. (1995). Coupled density functional/molecular mechanics Monte Carlo simula-tions of ions in water: The bromide ion. Chemical Physics Letters, 241, 450–456. https://doi.org/10.1016/0009-2614(95)00615-B.
- Tuñón, I., Martins-Costa, M. T. C., Millot, C., Ruiz-López, M. F., & Rivail, J. L. (1996). A coupled density functional–molecular mechanics Monte Carlo simulation method: The water molecule in liquid water. Journal of Computational Chemistry, 17, 19–29. https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<19::AID-JCC2>3.0.CO;2-3.
- van der Kamp, M. W., & Mulholland, A. J. (2013). Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational en-zymology. Biochemistry, 52, 2708–2728. https://doi.org/10.1021/bi400215w.
- van Duin, A. C. T., Dasgupta, S., Lorant, F., & Goddard, W. A. (2001). ReaxFF: A reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105, 9396–9409. https://doi.org/10.1021/jp004368u.
- Gao, J. (1993). Potential of mean force for the isomerization of DMF in aqueous solution: A Monte Carlo QM/MM simulation study. Journal of the American Chemical Society, 115, 2930–2935. https://doi.org/10.1021/ja00060a047.
- Gao, J. (1996). Hybrid quantum and molecular mechanical simulations: An alternative avenue to solvent effects in organic chemistry. Accounts of Chemical Research, 29, 298–305. https://doi.org/10.1021/ar950140r.
- Golze, D., Hutter, J., & Iannuzzi, M. (2015). Wetting of water on hexagonal boron nitride@Rh(111): A QM/MM model based on atomic charges derived for nanostructured substrates. Physical Chemistry Chemical Physics, 17, 14307–14316. https://doi.org/10.1039/C4CP04638B.
- Golze, D., Iannuzzi, M., Nguyen, M., Passerone, D., & Hutter, J. (2013). Simulation of adsorption processes at metallic interfaces: An image-charge-augmented QM/MM approach. Journal of Chemical Theory and Computation, 9, 5086–5097. https://doi.org/10.1021/ct400698y.
- Gonis, A., & Garland, J. W. (1977). Multishell method: Exact treatment of a cluster in an effective medium. Physical Review B, 16, 2424–2434. https://doi.org/10.1103/PhysRevB.16.2424.
- Hartke, B., & Grimme, S. (2010). Reactive force fields made simple. Physical Chemistry Chemical Physics, 12, 16715–16718. https://doi.org/10.1039/C5CP02580J.
- Herschend, B. W., Baudin, M., & Hermansson, K. (2004). A combined molecular dynamics–quantum mechanics method for investigation of dy-namic effects on local surface structures. The Journal of Chemical Physics, 120, 4939–4948. https://doi.org/10.1063/1.1635802.
- Hofer, T. S. (2014). Perspectives for hybrid ab initio/molecular mechanical simulations of solutions. Pure and Applied Chemistry, 86, 105–117. https://doi.org/10.1515/pac-2014-5019.
- Hofer, T. S., Hitzenberger, M., & Randolf, B. R. (2012). Combining a dissociative water model with a hybrid QM/MM approach. Journal of Chem-ical Theory and Computation, 8, 3586–3595. https://doi.org/10.1021/ct300062k.
- Hofer, T. S., Rode, B. M., Pribil, A. B., & Randolf, B. R. (2010). Simulations of liquids and solutions based on quantum mechanical forces. Ad-vances in Inorganic Chemistry, 62, 143–175. https://doi.org/10.1016/S0898-8838(10)62004-1.
- Hofer, T. S., &Tirler, A. O. (2015). Combining 2D-periodic quantum chemistry with molecular force fields. Journal of Chemical Theory and Com-putation, 11, 5873–5887. https://doi.org/10.1021/acs.jctc.5b00548.
- Hofer, T. S., Weiss, A. K. H., Randolf, B. R., & Rode, B. M. (2011). Hydration of highly charged ions. Chemical Physics Letters, 512, 139–144. https://doi.org/10.1016/j.cplett.2011.05.060.
- Atkins, P., & Friedman, R. (2021). Molecular Quantum Mechanics (6th ed.). Oxford: Oxford University Press.
- Mangaud, E., Jaouadi, A., Chin, A., et al. (2023). Survey of the hierarchical equations of motion in tensor-train format for non-Markovian quantum dynamics. European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00919-0.
- Dupuy, L., &Scribano, Y. (2023). Coping with the node problem in resonant scattering simulations using quantum trajectories. European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00924-3.
- Bindech, O., & Marquardt, R. (2023). Mean square displacement of a free quantum particle. European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00920-7.
- Panadés-Barrueta, R. L., Nadoveza, N., Gatti, F., & Peláez, D. (2023). On the sum-of-products to product-of-sums transformation. European Phys-ical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00928-z.
- Kechoindi, S., Ben Yaghlane, S., Terzi, N., Palaudoux, J., &Hochlaf, M. (2023). Characterization and photochemistry of XCO₂ radicals. European Physical Journal Special Topics.https://doi.org/10.1140/epjs/s11734-023-00918-1.
- Pereira, A., Knapik, J., Chen, A., et al. (2023). Quantum molecular dynamics simulations of photoisomerization. European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00923-4.
- Freixas-Lemus, V. M., Martínez-Mesa, A., & Uranga-Piña, L. (2023). Quasi-classical trajectory study of F + HCl reactive scattering. European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00945-y.
- Lara-Moreno, M., & Stoecklin, T. (2023). Quantum study of the radiative association of Cl⁻ + H₂ and Cl⁻ + D₂. European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00944-z.
-
Downloads
-
How to Cite
Krishna, R. H. . (2026). The Role of Quantum Chemistry in Complex Molecular Systems. International Journal of Scientific World, 12(1), 1-8. https://doi.org/10.14419/z3kbt082
