Metaheuristic Algorithms for Engineering and Combinatorial‎Optimization: A Comparative Study Across Problems Categories and Benchmarks

  • Authors

    • Awaz Ahmed Shaban Information Technology Department, Technical College of Informatics-Akre, Akre University for Applied Sciences, Duhok, Iraq
    • Saman M. Almufti Department of Computer Science, College of Science, Knowledge University, Erbil, Iraq and Department of Computer Systems, Ararat Technical Institute, Duhok, Iraq
    • Renas Rajab Asaad Department of Computer Science, College of Science, Knowledge University, Erbil, Iraq
    https://doi.org/10.14419/0hndc578

    Received date: June 22, 2025

    Accepted date: August 11, 2025

    Published date: August 23, 2025

  • Optimization Problem Categories; Metaheuristic Algorithms; Engineering Design Optimization; Benchmark Problems; Combinatorial Optimization; Swarm Intelligence; Constraint Handling; Algorithm Comparison; Structural Design; NP-Hard Problems.
  • Abstract

    Optimization remains a cornerstone of modern engineering and computational intelligence, playing a vital role in the design, control, and ‎allocation of limited resources across industries ranging from logistics to structural engineering. Traditional optimization methods, such as ‎gradient-based and exact algorithms, often struggle with the nonlinear, multimodal, and constrained nature of real-world problems, necessitating the adoption of metaheuristic approaches. These biologically and physically inspired algorithms offer flexibility, scalability, and robustness in navigating complex search spaces.‎

    This study presents a systematic categorization of optimization problems—including combinatorial, continuous, constrained, and multi-‎objective classes—followed by a rigorous comparative analysis of nine prominent metaheuristics: Ant Colony Optimization (ACO), Lion ‎Algorithm (LA), Cuckoo Search (CS), Grey Wolf Optimizer (GWO), Vibrating Particles System (VPS), Social Spider Optimization (SSO), ‎Cat Swarm Optimization (CSO), Bat Algorithm (BA), and Artificial Bee Colony (ABC). The algorithms are evaluated across five representative benchmark problems: the Traveling Salesman Problem (TSP), Welded Beam Design (WBD), Pressure Vessel Design (PVD), ‎Tension/Compression Spring Design (TSD), and the Knapsack Problem (KP).‎

    Key contributions include: 1)Domain-specific suitability analysis, revealing how algorithmic mechanisms align with problem structures.‎

    ‎ 2) Performance benchmarking under standardized conditions, highlighting convergence speed, solution quality, and constraint-handling ‎efficacy. 3) Practical insights for practitioners on algorithm selection, hybridization potential, and adaptation challenges.‎

    Results demonstrate that no single algorithm dominates universally; instead, problem characteristics dictate optimal choices. For instance, ‎ACO excels in discrete problems (TSP, KP), while GWO and BA outperform in continuous engineering designs (WBD, PVD). The study ‎concludes with recommendations for future research, including dynamic parameter tuning, hybrid models, and real-world scalability ‎assessments‎.

    Author Biography

    • Saman M. Almufti, Department of Computer Science, College of Science, Knowledge University, Erbil, Iraq and Department of Computer Systems, Ararat Technical Institute, Duhok, Iraq
      Swarm intellignce
  • References

    1. Almufti, S. M. (2017). Using swarm intelligence for solving NP-hard problems. Academic Journal of Nawroz University, 6(3), 46–50. https://doi.org/10.25007/ajnu.v6n3a78.
    2. Almufti, S. M. (2022a). Hybridizing Ant Colony Optimization Algorithm for optimizing edge-detector techniques. Academic Journal of Nawroz University, 11(2), 135–145. https://doi.org/10.25007/ajnu.v11n2a1320.
    3. Almufti, S. M. (2022b). Vibrating particles system algorithm: Overview, modifications and applications. Academic Journal of Nawroz University, 10(3), 31–41. https://doi.org/10.46291/ICONTECHvol6iss3pp1-11.
    4. Almufti, S. M. (2022c). Lion algorithm: Overview, modifications and applications. International Research Journal of Science, Technology, Educa-tion, and Management, 2(2), 176–186.
    5. Almufti, S. M. (2023). Fusion of water evaporation optimization and great deluge: A dynamic approach for benchmark function solving. Fusion: Practice and Applications, 13(1), 19–36. https://doi.org/10.54216/FPA.130102
    6. Almufti, S. M. . (2025). Metaheuristics Algorithms: Overview, Applications, and Modifications. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-454-2.
    7. Almufti, S. M., & Shaban, A. A. (2018). U-turning ant colony algorithm for solving symmetric traveling salesman problem. Academic Journal of Nawroz University, 7(4), 45–49. https://doi.org/10.25007/ajnu.v7n4a270.
    8. Almufti, S. M., & Shaban, A. A. (2025). A deep dive into the artificial bee colony algorithm: Theory, improvements, and real-world applications. International Journal of Scientific World, 11(1), 178–187. https://doi.org/10.14419/v9d3s339.
    9. Almufti, S. M., Alkurdi, A. A., & Khoursheed, E. A. (2022). Artificial bee colony algorithm performance in solving constraint-based optimization problems. Temematique, 21(1).
    10. Almufti, S. M., Maribojoc, R. P., & Pahuriray, A. V. (2022b). Ant-based system: Overviews, modifications, and applications from 1992 to 2022. Polaris Global Journal of Scholarly Research and Trends, 1(1), 10. https://doi.org/10.58429/pgjsrt.v1n1a85
    11. Almufti, S. M., Marqas, R. B., Asaad, R. R., & Shaban, A. A. (2025). Cuckoo search algorithm: Overview, modifications, and applications. Inter-national Journal of Scientific World, 11(1), 1–9. https://doi.org/10.14419/efkvvd44.
    12. Almufti, S. M., Shaban, A. A., Ali, R. I., & Dela Fuente, J. A. (2023). Overview of Metaheuristic Algorithms. Polaris Global Journal of Scholarly Research and Trends, 2(2), 10–32. https://doi.org/10.58429/pgjsrt.v2n2a144.
    13. Almufti, S. M. (2021). The novel social spider optimization algorithm: Overview, modifications, and applications. Icontech International Journal, 5(2), 32–51. https://doi.org/10.46291/ICONTECHvol5iss2pp32-51
    14. Amiri, B., Shahbahrami, A., & Mirjalili, S. (2019). Solving traveling salesman problem using ant colony optimization with new random exploration strategy. Mathematics and Computers in Simulation, 161, 74–84. https://doi.org/10.1016/j.matcom.2019.01.004.
    15. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. Oxford University Press. https://doi.org/10.1093/oso/9780195131581.001.0001.
    16. Chu, H., Roddick, J. F., & Pan, J.-S. (2009). Cat swarm optimization for feature selection. Expert Systems with Applications, 36(3), 7014–7025. https://doi.org/10.1016/j.eswa.2008.08.042.
    17. Chu, S. C., Roddick, J. F., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim International Conference on Artificial Intelligence (pp. 854–858). Springer. https://doi.org/10.1007/11801603_94
    18. Cuevas, E., Zaldivar, D., & Pérez-Cisneros, M. (2014). Social spider optimization. Applied Soft Computing, 24, 303–318. https://doi.org/10.1016/j.asoc.2014.07.011
    19. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-tionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017.
    20. Dehghani, M., Montazeri, Z., & Gandomi, A. H. (2021). Lion optimization algorithm: Theory, literature review, and applications. Applied Soft Computing, 105, 107329. https://doi.org/10.1016/j.asoc.2021.107329.
    21. Dervis, K. (2010). An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University.
    22. Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transac-tions on Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892.
    23. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. MIT Press. https://doi.org/10.7551/mitpress/1290.001.0001.
    24. Fister, I., Fister, D., Yang, X. S., & Brest, J. (2015). A comprehensive review of bat algorithm and its applications. Artificial Intelligence Review, 42, 895–919.
    25. Ihsan, R. R., Almufti, S. M., Ormani, B. M. S., Asaad, R. R., & Marqas, R. B. (2021). A survey on cat swarm optimization algorithm. Asian Journal of Research in Computer Science, 10(2), 22–32. https://doi.org/10.9734/ajrcos/2021/v10i230237.
    26. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Technical Report-TR06). Erciyes University.
    27. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algo-rithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x.
    28. Marqas, R. B., Almufti, S. M., Ahmed, H. B., & Asaad, R. R. (2021). Grey wolf optimizer: Overview, modifications and applications. International Research Journal of Science, Technology, Education, and Management, 1(1), 44–56. https://doi.org/10.14419/efkvvd44.
    29. Marqas, R. B., Almufti, S. M., Othman, P. S., & Abdulrahman, C. M. (2020). Evaluation of EHO, U-TACO and TS metaheuristics algorithms in solving TSP. Journal of Xi’an University of Architecture & Technology, 12(4), 3245–3246.
    30. Mehrabian, A. R., & Lucas, C. (2010). A novel numerical optimization algorithm inspired from the behavior of lions. Scientia Iranica, 17, 424–433.
    31. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
    32. Sahoo, G., & Tripathy, R. (2020). Comparative study of nature-inspired algorithms for TSP. International Journal of Computer Applications, 175(6), 1–6.
    33. Shaban, A. A., & Ibrahim, I. M. (2025). Swarm intelligence algorithms: A survey of modifications and applications. International Journal of Scien-tific World.
    34. Shaban, A. A., & Yasin, H. M. (2025). Applications of the artificial bee colony algorithm in medical imaging and diagnostics: A review. Interna-tional Journal of Scientific World, 11(1), 21–29. https://doi.org/10.14419/yszxm607
    35. Shaban, A. A., Almufti, S. M., Asaad, R. R., & Marqas, R. B. (2025). Swarm-based optimisation strategies for structural engineering: A case study on welded beam design. FMDB Transactions on Sustainable Computer Letters, 3(1), 1–11. https://doi.org/10.69888/FTSCL.2025.000355
    36. Shaban, A. A., Dela Fuente, J. A., Salih, M. S., & Ali, R. I. (2023). Review of swarm intelligence for solving symmetric traveling salesman problem. Qubahan Academic Journal, 3(2), 10–27. https://doi.org/10.48161/qaj.v3n2a141.
    37. Siddique, B., & Adeli, H. (2018). Vibrating particle system algorithm for optimization. Journal of Computing in Civil Engineering, 32(1), 04017080. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000715.
    38. Wang, G. G., Deb, S., & Coelho, L. D. S. (2015). Elephant herding optimization. In Proceedings of the 2015 International Symposium on Compu-tational Intelligence and Design (pp. 1–6). https://doi.org/10.1109/ISCID.2015.134.
    39. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In J. R. González et al. (Eds.), Nature inspired cooperative strategies for optimiza-tion (NICSO 2010) (pp. 65–74). Springer. https://doi.org/10.1007/978-3-642-12538-6_6
    40. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired Compu-ting (pp. 210–214). https://doi.org/10.1109/NABIC.2009.5393690
    41. Zebari, A. Y., Almufti, S. M., & Abdulrahman, C. M. (2020). Bat algorithm (BA): Review, applications and modifications. International Journal of Scientific World, 8(1), 1–7. Science Publishing Corporation. https://doi.org/10.14419/ijsw.v8i1.30120
    42. Almufti, S. M. (2015). U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem.
    43. Almufti, S. M., & Shaban, A. A. (2025). Comparative analysis of metaheuristic algorithms for solving the travelling salesman problems. Internation-al Journal of Scientific World, 11(2), 26–30.
  • Downloads

  • How to Cite

    Ahmed Shaban, A., Almufti, S. M., & Asaad , R. R. . (2025). Metaheuristic Algorithms for Engineering and Combinatorial‎Optimization: A Comparative Study Across Problems Categories and Benchmarks. International Journal of Scientific World, 11(2), 38-49. https://doi.org/10.14419/0hndc578