Metaheuristic Algorithms for Engineering and CombinatorialOptimization: A Comparative Study Across Problems Categories and Benchmarks
-
https://doi.org/10.14419/0hndc578
Received date: June 22, 2025
Accepted date: August 11, 2025
Published date: August 23, 2025
-
Optimization Problem Categories; Metaheuristic Algorithms; Engineering Design Optimization; Benchmark Problems; Combinatorial Optimization; Swarm Intelligence; Constraint Handling; Algorithm Comparison; Structural Design; NP-Hard Problems. -
Abstract
Optimization remains a cornerstone of modern engineering and computational intelligence, playing a vital role in the design, control, and allocation of limited resources across industries ranging from logistics to structural engineering. Traditional optimization methods, such as gradient-based and exact algorithms, often struggle with the nonlinear, multimodal, and constrained nature of real-world problems, necessitating the adoption of metaheuristic approaches. These biologically and physically inspired algorithms offer flexibility, scalability, and robustness in navigating complex search spaces.
This study presents a systematic categorization of optimization problems—including combinatorial, continuous, constrained, and multi-objective classes—followed by a rigorous comparative analysis of nine prominent metaheuristics: Ant Colony Optimization (ACO), Lion Algorithm (LA), Cuckoo Search (CS), Grey Wolf Optimizer (GWO), Vibrating Particles System (VPS), Social Spider Optimization (SSO), Cat Swarm Optimization (CSO), Bat Algorithm (BA), and Artificial Bee Colony (ABC). The algorithms are evaluated across five representative benchmark problems: the Traveling Salesman Problem (TSP), Welded Beam Design (WBD), Pressure Vessel Design (PVD), Tension/Compression Spring Design (TSD), and the Knapsack Problem (KP).
Key contributions include: 1)Domain-specific suitability analysis, revealing how algorithmic mechanisms align with problem structures.
2) Performance benchmarking under standardized conditions, highlighting convergence speed, solution quality, and constraint-handling efficacy. 3) Practical insights for practitioners on algorithm selection, hybridization potential, and adaptation challenges.
Results demonstrate that no single algorithm dominates universally; instead, problem characteristics dictate optimal choices. For instance, ACO excels in discrete problems (TSP, KP), while GWO and BA outperform in continuous engineering designs (WBD, PVD). The study concludes with recommendations for future research, including dynamic parameter tuning, hybrid models, and real-world scalability assessments.
-
References
- Almufti, S. M. (2017). Using swarm intelligence for solving NP-hard problems. Academic Journal of Nawroz University, 6(3), 46–50. https://doi.org/10.25007/ajnu.v6n3a78.
- Almufti, S. M. (2022a). Hybridizing Ant Colony Optimization Algorithm for optimizing edge-detector techniques. Academic Journal of Nawroz University, 11(2), 135–145. https://doi.org/10.25007/ajnu.v11n2a1320.
- Almufti, S. M. (2022b). Vibrating particles system algorithm: Overview, modifications and applications. Academic Journal of Nawroz University, 10(3), 31–41. https://doi.org/10.46291/ICONTECHvol6iss3pp1-11.
- Almufti, S. M. (2022c). Lion algorithm: Overview, modifications and applications. International Research Journal of Science, Technology, Educa-tion, and Management, 2(2), 176–186.
- Almufti, S. M. (2023). Fusion of water evaporation optimization and great deluge: A dynamic approach for benchmark function solving. Fusion: Practice and Applications, 13(1), 19–36. https://doi.org/10.54216/FPA.130102
- Almufti, S. M. . (2025). Metaheuristics Algorithms: Overview, Applications, and Modifications. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-454-2.
- Almufti, S. M., & Shaban, A. A. (2018). U-turning ant colony algorithm for solving symmetric traveling salesman problem. Academic Journal of Nawroz University, 7(4), 45–49. https://doi.org/10.25007/ajnu.v7n4a270.
- Almufti, S. M., & Shaban, A. A. (2025). A deep dive into the artificial bee colony algorithm: Theory, improvements, and real-world applications. International Journal of Scientific World, 11(1), 178–187. https://doi.org/10.14419/v9d3s339.
- Almufti, S. M., Alkurdi, A. A., & Khoursheed, E. A. (2022). Artificial bee colony algorithm performance in solving constraint-based optimization problems. Temematique, 21(1).
- Almufti, S. M., Maribojoc, R. P., & Pahuriray, A. V. (2022b). Ant-based system: Overviews, modifications, and applications from 1992 to 2022. Polaris Global Journal of Scholarly Research and Trends, 1(1), 10. https://doi.org/10.58429/pgjsrt.v1n1a85
- Almufti, S. M., Marqas, R. B., Asaad, R. R., & Shaban, A. A. (2025). Cuckoo search algorithm: Overview, modifications, and applications. Inter-national Journal of Scientific World, 11(1), 1–9. https://doi.org/10.14419/efkvvd44.
- Almufti, S. M., Shaban, A. A., Ali, R. I., & Dela Fuente, J. A. (2023). Overview of Metaheuristic Algorithms. Polaris Global Journal of Scholarly Research and Trends, 2(2), 10–32. https://doi.org/10.58429/pgjsrt.v2n2a144.
- Almufti, S. M. (2021). The novel social spider optimization algorithm: Overview, modifications, and applications. Icontech International Journal, 5(2), 32–51. https://doi.org/10.46291/ICONTECHvol5iss2pp32-51
- Amiri, B., Shahbahrami, A., & Mirjalili, S. (2019). Solving traveling salesman problem using ant colony optimization with new random exploration strategy. Mathematics and Computers in Simulation, 161, 74–84. https://doi.org/10.1016/j.matcom.2019.01.004.
- Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. Oxford University Press. https://doi.org/10.1093/oso/9780195131581.001.0001.
- Chu, H., Roddick, J. F., & Pan, J.-S. (2009). Cat swarm optimization for feature selection. Expert Systems with Applications, 36(3), 7014–7025. https://doi.org/10.1016/j.eswa.2008.08.042.
- Chu, S. C., Roddick, J. F., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim International Conference on Artificial Intelligence (pp. 854–858). Springer. https://doi.org/10.1007/11801603_94
- Cuevas, E., Zaldivar, D., & Pérez-Cisneros, M. (2014). Social spider optimization. Applied Soft Computing, 24, 303–318. https://doi.org/10.1016/j.asoc.2014.07.011
- Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-tionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017.
- Dehghani, M., Montazeri, Z., & Gandomi, A. H. (2021). Lion optimization algorithm: Theory, literature review, and applications. Applied Soft Computing, 105, 107329. https://doi.org/10.1016/j.asoc.2021.107329.
- Dervis, K. (2010). An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University.
- Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transac-tions on Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892.
- Dorigo, M., & Stützle, T. (2004). Ant colony optimization. MIT Press. https://doi.org/10.7551/mitpress/1290.001.0001.
- Fister, I., Fister, D., Yang, X. S., & Brest, J. (2015). A comprehensive review of bat algorithm and its applications. Artificial Intelligence Review, 42, 895–919.
- Ihsan, R. R., Almufti, S. M., Ormani, B. M. S., Asaad, R. R., & Marqas, R. B. (2021). A survey on cat swarm optimization algorithm. Asian Journal of Research in Computer Science, 10(2), 22–32. https://doi.org/10.9734/ajrcos/2021/v10i230237.
- Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Technical Report-TR06). Erciyes University.
- Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algo-rithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x.
- Marqas, R. B., Almufti, S. M., Ahmed, H. B., & Asaad, R. R. (2021). Grey wolf optimizer: Overview, modifications and applications. International Research Journal of Science, Technology, Education, and Management, 1(1), 44–56. https://doi.org/10.14419/efkvvd44.
- Marqas, R. B., Almufti, S. M., Othman, P. S., & Abdulrahman, C. M. (2020). Evaluation of EHO, U-TACO and TS metaheuristics algorithms in solving TSP. Journal of Xi’an University of Architecture & Technology, 12(4), 3245–3246.
- Mehrabian, A. R., & Lucas, C. (2010). A novel numerical optimization algorithm inspired from the behavior of lions. Scientia Iranica, 17, 424–433.
- Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- Sahoo, G., & Tripathy, R. (2020). Comparative study of nature-inspired algorithms for TSP. International Journal of Computer Applications, 175(6), 1–6.
- Shaban, A. A., & Ibrahim, I. M. (2025). Swarm intelligence algorithms: A survey of modifications and applications. International Journal of Scien-tific World.
- Shaban, A. A., & Yasin, H. M. (2025). Applications of the artificial bee colony algorithm in medical imaging and diagnostics: A review. Interna-tional Journal of Scientific World, 11(1), 21–29. https://doi.org/10.14419/yszxm607
- Shaban, A. A., Almufti, S. M., Asaad, R. R., & Marqas, R. B. (2025). Swarm-based optimisation strategies for structural engineering: A case study on welded beam design. FMDB Transactions on Sustainable Computer Letters, 3(1), 1–11. https://doi.org/10.69888/FTSCL.2025.000355
- Shaban, A. A., Dela Fuente, J. A., Salih, M. S., & Ali, R. I. (2023). Review of swarm intelligence for solving symmetric traveling salesman problem. Qubahan Academic Journal, 3(2), 10–27. https://doi.org/10.48161/qaj.v3n2a141.
- Siddique, B., & Adeli, H. (2018). Vibrating particle system algorithm for optimization. Journal of Computing in Civil Engineering, 32(1), 04017080. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000715.
- Wang, G. G., Deb, S., & Coelho, L. D. S. (2015). Elephant herding optimization. In Proceedings of the 2015 International Symposium on Compu-tational Intelligence and Design (pp. 1–6). https://doi.org/10.1109/ISCID.2015.134.
- Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In J. R. González et al. (Eds.), Nature inspired cooperative strategies for optimiza-tion (NICSO 2010) (pp. 65–74). Springer. https://doi.org/10.1007/978-3-642-12538-6_6
- Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired Compu-ting (pp. 210–214). https://doi.org/10.1109/NABIC.2009.5393690
- Zebari, A. Y., Almufti, S. M., & Abdulrahman, C. M. (2020). Bat algorithm (BA): Review, applications and modifications. International Journal of Scientific World, 8(1), 1–7. Science Publishing Corporation. https://doi.org/10.14419/ijsw.v8i1.30120
- Almufti, S. M. (2015). U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem.
- Almufti, S. M., & Shaban, A. A. (2025). Comparative analysis of metaheuristic algorithms for solving the travelling salesman problems. Internation-al Journal of Scientific World, 11(2), 26–30.
-
Downloads
-
How to Cite
Ahmed Shaban, A., Almufti, S. M., & Asaad , R. R. . (2025). Metaheuristic Algorithms for Engineering and CombinatorialOptimization: A Comparative Study Across Problems Categories and Benchmarks. International Journal of Scientific World, 11(2), 38-49. https://doi.org/10.14419/0hndc578
