AI-Driven Database Optimization: Machine Learning Applications in Database Management Systems

  • Authors

    • Renjbar Sh. Othman Duhok Polytechnic University, Technical Institute of Amedi, Department of Information Technology, Duhok, Kurdistan Region, Iraq and Akre University for Applied Sciences, Technical College of Informatics-Akre, Department of Information Technology, Akre, Kurdistan Region, ‎Iraq
    • Hajar Maseeh Yasin Akre University for Applied Sciences, Technical College of Informatics, Akre, Department of Information Technology, Duhok, Kurdistan Re-‎gion, Iraq
    https://doi.org/10.14419/3r6dyh15

    Received date: April 24, 2025

    Accepted date: June 14, 2025

    Published date: August 29, 2025

  • AI-Driven Database Optimization; Machine Learning; Query Performance Enhancement; Intelligent Indexing; Automated Workload Management‎.
  • Abstract

    This study investigates the transformative impact of artificial intelligence (AI) and machine learning (ML) on database management systems ‎‎(DBMS), particularly in optimizing query execution, workload management, indexing, and security. This review delves into AI-driven ‎methodologies, including reinforcement learning, deep learning, and Bayesian optimization, which significantly enhance scalability, automation, and efficiency within DBMS. Nonetheless, challenges such as high computational costs, integration complexities, and security vulnerabilities persist. The primary aim of this review is to evaluate current AI applications in database optimization, measure their effectiveness, ‎and delineate future research trajectories. Findings indicate that AI-driven autonomous databases can substantially reduce manual interventions and enhance real-time adaptability. Future research endeavors should prioritize the development of energy-efficient AI models, explore ‎federated learning for privacy preservation, and investigate quantum computing to overcome existing limitations and further propel the evolution of self-optimizing database architectures.

  • References

    1. G. Li, X. Zhou, and L. Cao, “AI Meets Database: AI4DB and DB4AI,” in Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA: ACM, Jun. 2021, pp. 2859–2866. https://doi.org/10.1145/3448016.3457542.
    2. S. Islam, “future trends in sql databases and big data analytics: impact of machine learning and artificial intelligence,” Int. J. Sci. Eng., vol. 1, no. 4, pp. 47–62, Aug. 2024, https://doi.org/10.62304/ijse.v1i04.188.
    3. U. K. M. -, “Enhancing High-Availability Database Systems: An AI-Driven Approach to Anomaly Detection,” Int. J. Multidiscip. Res., vol. 6, no. 6, Nov. 2024, https://doi.org/10.36948/ijfmr.2024.v06i06.30181.
    4. Artificial Intelligence in Chemical Engineering: Past, Present, and Future Perspectives,” J. Chem. Heal. Risks, 2023, doi: 10.52783/jchr.v13.i6.2058.
    5. A. J, “Review of AI-driven Cloud Optimization,” INTERANTIONAL J. Sci. Res. Eng. Manag., vol. 08, no. 05, pp. 1–5, May 2024, https://doi.org/10.55041/IJSREM34000.
    6. A. A. Salih et al., “Deep Learning Approaches for Intrusion Detection,” Asian J. Res. Comput. Sci., pp. 50–64, Jun. 2021, https://doi.org/10.9734/ajrcos/2021/v9i430229.
    7. R. Avdal Saleh and H. Maseeh Yasin, “Comparative Analysis of AI and Machine Learning Applications in Modern Database,” Eng. Technol. J., vol. 10, no. 03, Oct. 2025, https://doi.org/10.47191/etj/v10i03.21.
    8. Kamal Ola Al-Amin, Chikezie Paul-Mikki Ewim, Abbey Ngochindo Igwe, and Onyeka Chrisanctus Ofodile, “AI-Driven end-to-end workflow optimization and automation system for SMEs,” Int. J. Manag. Entrep. Res., vol. 6, no. 11, pp. 3666–3684, Nov. 2024, https://doi.org/10.51594/ijmer.v6i11.1688.
    9. R. Guerra, “Enhancing risk management in hospitals: leveraging artificial intelligence for improved outcomes,” Ital. J. Med., vol. 18, no. 2, Apr. 2024, https://doi.org/10.4081/itjm.2024.1721.
    10. Chuka Anthony Arinze and Boma Sonimiteim Jacks, “A COMPREHENSIVE REVIEW ON AI-DRIVEN OPTIMIZATION TECHNIQUES ENHANCING SUSTAINABILITY IN OIL AND GAS PRODUCTION PROCESSES,” Eng. Sci. Technol. J., vol. 5, no. 3, pp. 962–973, Mar. 2024, https://doi.org/10.51594/estj.v5i3.950.
    11. A. Varghese, “AI-Driven Solutions for Energy Optimization and Environmental Conservation in Digital Business Environments,” Asia Pacific J. Energy Environ., vol. 9, no. 1, pp. 49–60, Jun. 2022, https://doi.org/10.18034/apjee.v9i1.736.
    12. A. Chandratreya, “AI-Powered Innovations in Electrical Engineering: Enhancing Efficiency, Reliability, and Sustainability,” J. Electr. Syst., vol. 20, no. 2, pp. 1580–1587, Apr. 2024, https://doi.org/10.52783/jes.1463.
    13. C. Pooja, W. Ali, J. Mookerjee, and R. Mookerjee, “AI’s Evolutionary Role in Data Management and its Profound Influence on Business Outcomes,” Int. J. Comput. Eng. Res. Trends, vol. 10, no. 7, pp. 22–31, Jul. 2023, https://doi.org/10.22362/ijcert/2023/v10/i07/v10i0704.
    14. X. Liu, “Optimization of sewage treatment processes: Process control based on artificial intelligence,” Appl. Comput. Eng., vol. 93, no. 1, pp. 185–190, Nov. 2024, https://doi.org/10.54254/2755-2721/93/20240981.
    15. A. Anwar, M. Talha, and A. Hameed, “Application of Artificial Intelligence in Thermal Management and Wavelet Analysis: A Comprehensive Review,” Aug. 15, 2023. https://doi.org/10.31219/osf.io/d2vn3.
    16. A. Aldoseri, K. Al-Khalifa, and A. Hamouda, “A Roadmap for Integrating Automation with Process Optimization for AI-powered Digital Transformation,” Oct. 17, 2023. https://doi.org/10.20944/preprints202310.1055.v1.
    17. Akoh Atadoga, Ogugua Chimezie Obi, Femi Osasona, Shedrack Onwusinkwue, Andrew Ifesinachi Daraojimba, and Samuel Onimisi Dawodu, “AI in supply chain optimization: A comparative review of USA and African Trends,” Int. J. Sci. Res. Arch., vol. 11, no. 1, pp. 896–903, Jan. 2024, https://doi.org/10.30574/ijsra.2024.11.1.0156.
    18. T. S. Frisby, Z. Gong, and C. J. Langmead, “Asynchronous parallel Bayesian optimization for AI-driven cloud laboratories,” Bioinformatics, vol. 37, no. Supplement_1, pp. i451–i459, Aug. 2021, https://doi.org/10.1093/bioinformatics/btab291.
    19. R. Marcus and O. Papaemmanouil, “Towards a Hands-Free Query Optimizer through Deep Learning”.
    20. F. Q. Kareem et al., “SQL Injection Attacks Prevention System Technology: Review,” Asian J. Res. Comput. Sci., pp. 13–32, Jul. 2021, https://doi.org/10.9734/ajrcos/2021/v10i330242.
    21. T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The Case for Learned Index Structures,” in Proceedings of the 2018 International Conference on Management of Data, New York, NY, USA: ACM, May 2018, pp. 489–504. https://doi.org/10.1145/3183713.3196909.
    22. Q. Shen et al., “Visual Interpretation of Recurrent Neural Network on Multi-dimensional Time-series Forecast,” in 2020 IEEE Pacific Visualization Symposium (PacificVis), IEEE, Jun. 2020, pp. 61–70. https://doi.org/10.1109/PacificVis48177.2020.2785.
    23. Y. Zhang, S. Gao, and H. Huang, “Exploration and Estimation for Model Compression,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, Oct. 2021, pp. 477–486. https://doi.org/10.1109/ICCV48922.2021.00054.
    24. Y. Huang et al., “Yugong,” Proc. VLDB Endow., vol. 12, no. 12, pp. 2155–2169, Aug. 2019, https://doi.org/10.14778/3352063.3352132.
    25. Y. Tao, Y. Li, and G. Li, “Interactive Graph Search,” in Proceedings of the 2019 International Conference on Management of Data, New York, NY, USA: ACM, Jun. 2019, pp. 1393–1410. https://doi.org/10.1145/3299869.3319885.
    26. J. Zhang et al., “An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning,” in Proceedings of the 2019 International Conference on Management of Data, New York, NY, USA: ACM, Jun. 2019, pp. 415–432. https://doi.org/10.1145/3299869.3300085.
    27. M. Anurag Reddy Basani and A. Kandi, “Data-Driven Decision Making: Advanced Database Systems for Business Intelligence,” Int. J. Sci. Res., vol. 13, no. 11, pp. 844–850, Nov. 2024, https://doi.org/10.21275/SR241114034006.
    28. G. Li, X. Zhou, and L. Cao, “Machine Learning for Databases,” in The First International Conference on AI-ML-Systems, New York, NY, USA: ACM, Oct. 2021, pp. 1–2. https://doi.org/10.1145/3486001.3486248.
    29. G. Cong, J. Yang, and Y. Zhao, “Machine Learning for Databases: Foundations, Paradigms, and Open problems,” in Companion of the 2024 International Conference on Management of Data, New York, NY, USA: ACM, Jun. 2024, pp. 622–629. https://doi.org/10.1145/3626246.3654686.
    30. R. Dhaya, R. Kanthavel, and K. Venusamy, “AI Based Learning Model Management Framework for Private Cloud Computing,” J. Internet Technol., vol. 23, no. 7, pp. 1633–1642, 2022, https://doi.org/10.53106/160792642022122307017.
    31. B. R. Shaw, B. Halder, S. Sen, S. Basak, and S. Bhattacharya, “AI DBMS in modern-day applications,” Am. J. Adv. Comput., vol. 2, no. 1, pp. 1–5, 2023, https://doi.org/10.15864/ajac.21012.
    32. N. R. Palnati, V. K. Reddy Julakanti, and N. Bayyavarapu, “Leveraging Machine Learning for Enhanced Database Integration,” Procedia Comput. Sci., vol. 235, pp. 1623–1633, 2024, https://doi.org/10.1016/j.procs.2024.04.154.
    33. P. Miraj, M. A. Berawi, A. Aninditya, and M. Sari, “Evaluating the impact of knowledge management and database management on decision-making process: A case study of subsea project services,” J. Open Innov. Technol. Mark. Complex., vol. 10, no. 3, 2024, https://doi.org/10.1016/j.joitmc.2024.100340.
    34. H. Gadde, “AI-Augmented Database Management Systems for Real-Time Data Analytics,” vol. 01, pp. 616–649, 2024.
    35. O. Oloruntoba, “AI-Driven autonomous database management : Self-tuning , predictive query optimization , and intelligent indexing in enterprise it environments AI-Driven autonomous database management : Self-tuning , predictive query optimization , and intelligent indexi,” no. February, 2025, https://doi.org/10.30574/wjarr.2025.25.2.0534.
    36. S. K. Pendyala, “Journal of Artificial intelligence and Machine Learning AI-Driven Dynamic Query Optimization for Multi-Cloud Systems : An Adaptive and Predictive Framework”.
    37. J. Zhang et al., “CDBTune + : An efficient deep reinforcement learning-based automatic cloud database tuning system,” VLDB J., vol. 30, no. 6, pp. 959–987, 2021, https://doi.org/10.1007/s00778-021-00670-9.
    38. V. Panwar, “Decentralized Ai in Database Management: Revolutionizing Data Processing and Analysis,” Int. J. Eng. Appl. Sci. Technol., no. April, 2024, [Online]. Available: https://www.academia.edu/120638653/DECENTRALIZED_AI_IN_DATABASE_MANAGEMENT_REVOLUTIONIZING_DATA_PROCESSING_AND_ANALYSIS.
    39. Rabia Kanwal, “MACHINE LEARNING APPLICATIONS IN DATABASE MANAGEMENT ENHANCING PERFORMANCE AND INSIGHTS,” Kashf J. Multidiscip. Res., vol. 1, no. 10, pp. 37–49, Oct. 2024, https://doi.org/10.71146/kjmr106
    40. S. T. N, “Machine Learning for Database Management Systems,” Int. J. Eng. Comput. Sci., vol. 9, no. 08, pp. 25132–25147, 2020,. https://doi.org/10.18535/ijecs/v9i08.4520.
    41. B. C. Ooi et al., “NeurDB: an AI-powered autonomous data system,” Sci. China Inf. Sci., vol. 67, no. 10, 2024, https://doi.org/10.1007/s11432-024-4125-9.
    42. M. E. Schüle, H. Lang, M. Springer, A. Kemper, T. Neumann, and S. Günnemann, “Recursive SQL and GPU-support for in-database machine learning,” 2022. https://doi.org/10.1007/s10619-022-07417-7.
    43. S. Chinta, “The role of generative AI in oracle database automation : Revolutionizing data management and analytics,” vol. 04, no. 01, pp. 54–63, 2019.
    44. K. Gunasekaran, K. Tiwari, and R. Acharya, “Utilizing deep learning for automated tuning of database management systems,” Proc. - 2023 Int. Conf. Commun. Comput. Artif. Intell. CCCAI 2023, no. Ml, pp. 75–81, 2023, https://doi.org/10.1109/CCCAI59026.2023.00022.
    45. V. Kalyan Jupudi, N. Kishore Mysuru, and R. Mekala, “Workload-Based Performance Tuning in Database Management Systems through Integration of Artificial Intelligence,” Int. J. Innov. Sci. Res. Technol., vol. 9, no. 6, pp. 3057–3061, 2024, https://doi.org/10.38124/ijisrt/IJISRT24JUN1908.
    46. C. Wang, Z. Arani, L. Gruenwald, L. d’Orazio, and E. Leal, “Re-optimization for Multi-objective Cloud Database Query Processing using Machine Learning,” Int. J. Database Manag. Syst., vol. 13, no. 1, pp. 21–40, 2021, https://doi.org/10.5121/ijdms.2021.13102.
    47. M. Li, “AI-Driven Database Performance Tuning : Automated Indexing and Query Optimization Abstract : Introduction : Background :,” vol. 6, pp. 1–7, 2023.
    48. K. P. Gunasekaran, K. Tiwari, and R. Acharya, “Deep learning based Auto Tuning for Database Management System,” 2023, https://doi.org/10.1109/CCCAI59026.2023.00022.
    49. J. Lao et al., “GPTuner: A Manual-Reading Database Tuning System via GPT-Guided Bayesian Optimization,” Proc. VLDB Endow., vol. 17, no. 8, pp. 1939–1952, 2024, https://doi.org/10.14778/3659437.3659449.
  • Downloads

  • How to Cite

    Othman, R. S. . ., & Yasin , H. M. . (2025). AI-Driven Database Optimization: Machine Learning Applications in Database Management Systems. International Journal of Scientific World, 11(2), 62-70. https://doi.org/10.14419/3r6dyh15