The superluminous vacuum

  • Authors

  • The Standard Cosmological and Particle Models of physics have set both in their formalism an absolute limit, the speed of light c or else called the speed of causality and claim that this is also a physical limit in nature in our visible Universe. This however, we claim is also unproven up to today and nature has always imposed exceptions and violations in accepted theories many times in the past and proved that these were merely human formalism and experiments artifacts and used technology restrictions and that physical limits and rules are constantly broken and bend in nature. We hereby will try to theoretically demonstrate, why and how the very existence and empirical evidence in our Universe of vacuum space, either in its theorized ideal absolute form thus free space or partially vacuum characterized as QED or QCD vacuum and its zero-point energy and fluctuations, maybe actually the biggest proof in nature for superluminous energy being possible without violating causality. That the apparent effect of “nothingness” of vacuum space maybe the evidence for superluminocity and was right in front of us all this time hidden. We herein try to answer a fundamental physics question why vacuum space appears to us, basically, as nothing assuming that ‘nothing’ does not exists in nature and why a hypothetical superluminous vibration, Planck sized particle generates apparent nothingness in our spacetime. The novelty of the research herein infers that free space is the dark energy and which is superluminous energy.

    Author Biography

    • Emmanouil Markoulakis, Hellenic Mediterranean University

      Deprt. Electronic Engineering

      Research Fellow/Academic staff/Post Doc (PhD)

      Age: 54

  • References

    1. L. Smolin, Three roads to quantum gravity, Hachette UK, 2008.
    2. C. Rovelli, Loop Quantum Gravity, Living Rev. Relativ. 2008 111. 11 (2008) 1–69.
    3. T. Rothman, S. Boughn, Can gravitons be detected?, Found. Phys. 36 (2006) 1801–1825.
    5. K.P. Sinha, C. Sivaram, E.C.G. Sudarshan, Aether as a superfluid state of particle-antiparticle pairs, Found. Phys. 6 (1976) 65–70.
    6. K.G. Zloshchastiev, On Asymptotic Behavior of Galactic Rotation Curves in Superfluid Vacuum Theory, Astron. Reports. 65 (2021) 1078–1083.
    7. Weinberg, Steven, Cosmology, Cosm. (2008) 593. (accessed February 7, 2023).
    8. L. Lombriser, On the cosmological constant problem, Phys. Lett. B. 797 (2019) 134804.
    9. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75 (2003) 559.
    10. P.J. Stainhardt, N. Turok, Why the Cosmological Constant Is Small and Positive, Science (80-. ). 312 (2006) 1180–1183.
    11. G. Bertone, D. Hooper, History of dark matter, Rev. Mod. Phys. 90 (2018) 045002.
    12. V. Trimble, Existence and Nature of Dark Matter in the Universe, Https://Doi.Org/10.1146/Annurev.Aa.25.090187.002233. 25 (2003) 425–472.
    13. Y. Song, H. Gao, Y. Chung Chang, al -, D. Kumar Sharma, S. Kumar, S. Auluck, G. Barton, K. Schamhorst, QED between parallel mirrors: light signals faster than c, or amplified by the vacuum, J. Phys. A. Math. Gen. 26 (1993) 2037.
    14. L. Hollenstein, M. Jaccard, M. Maggiore, E. Mitsou, Zero-point quantum fluctuations in cosmology, Phys. Rev. D - Part. Fields, Gravit. Cosmol. 85 (2012) 124031.
    15. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum electrodynamics with Unstable Vacuum, Fortschritte Der Phys. Phys. 36 (1988) 643–669. (accessed February 7, 2023).
    16. R.J. Adler, B. Casey, O.C. Jacob, Vacuum catastrophe: An elementary exposition of the cosmological constant problem, Am. J. Phys. 63 (1998) 620.
    17. G. Smith, J. Forshaw, Dynamics and relativity, Wiley, 2014.
    18. A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. Phys. 322 (1905) 891–921.
    19. Emergent Nonlinear Phenomena in Bose-Einstein Condensates, Emergent Nonlinear Phenom. Bose-Einstein Condens. (2008).
    20. H.W. Hamber, Vacuum Condensate Picture of Quantum Gravity, Symmetry 2019, Vol. 11, Page 87. 11 (2019) 87.
    21. R.P. Feynman, R.B. Leighton, M. Sands, E.M. Hafner, The Feynman Lectures on Physics; Vol. I, Am. J. Phys. 33 (2005) 750.
    22. A. Sadler, P. Mag, C.A. Sadler, ; C G Ibid, H. Barkla ; W, W.L. Bragg, G.J. Bragg ; 3h, C.G. Moseley, T. Darwin ; * W. Duane, L. Shimizu ; G, W. Clark, Y.H. Duane, ; Woo, An Interpretation of Dirac’s Theory of the Electron, Proc. Natl. Acad. Sci. 14 (1928) 553–559.
    23. B. Hensen, H. Bernien, A.E. Dreaú, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nat. 2015 5267575. 526 (2015) 682–686.
    24. E. Gibney, Entangled photons make a picture from a paradox, Nature. (2014).
    25. A. Zeilinger, Spin directions of interfering beams in quantum interferometry, Nat. 1981 2945841. 294 (1981) 544–546.
    26. P.A.M. Dirac, ’ Z F Physik, The quantum theory of the electron, Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character. 117 (1928) 610–624.
    27. P. Guynn, Thomas Precession is the Basis for the Structure of Matter and Space, (2018). (accessed February 8, 2023).
    28. D.J. Raine, E.G. Thomas, Black holes: an introduction, Imperial College Press, 2010.
    29. E. Markoulakis, E. Antonidakis, A ½ spin fiber model for the electron, Int. J. Phys. Res. 10 (2022) 1–17.
    30. H.B.G. Casimir, D. Polder, The Influence of Retardation on the London-van der Waals Forces, Phys. Rev. 73 (1948) 360.
    31. M. Beauregard, G. Fucci, K. Kirsten, The Casimir force: background, experiments, and applications, Reports Prog. Phys. 68 (2004) 201.
    32. B. Abi et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801.
    33. J.A. Wheeler, Geons, Phys. Rev. 97 (1955) 511.
    34. V. Vasileiou, J. Granot, T. Piran, G. Amelino-Camelia, A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation, Nat. Phys. 2014 114. 11 (2015) 344–346.
    35. M. Clerici, G.C. Spalding, R. Warburton, A. Lyons, C. Niculaesei, J.M. Richards, J. Leach, R. Henderson, D. Faccio, Observation of image pair creation and annihilation from superluminal scattering sources, Sci. Adv. 2 (2016).
    36. R.J. Nemiroff, N. Kaushal, Toward the Detection of Relativistic Image Doubling in Imaging Atmospheric Cherenkov Telescopes, Astrophys. J. 889 (2020) 122.
    37. Jackson, John David (1999). Classical electrodynamics (3rd ed.). New York: Wiley. pp. 637–638.
    38. W.D. Walker, Superluminal Propagation Speed of Longitudinally Oscillating Electrical Fields, Causality Locality Mod. Phys. (1998) 127–134.
    39. W.D. WALKER, Near-Field Analysis of Superluminally Propagating Electromagnetic and Gravitational Fields, Fundam. Phys. Vigier Centen. (2021) 413–430.
    40. W.D. Walker, Experimental Evidence of Near-Field Superluminally Propagating Electromagnetic Fields, Gravit. Cosmol. From Hubble Radius to Planck Scale. (2002) 189–196. Arxiv:
    41. W.D. Walker, Near-field electromagnetic effects on Einstein special relativity, 2008 IEEE Int. Symp. Antennas Propag. Usn. Natl. Radio Sci. Meet. APSURSI. (2008).
    42. G. Nimtz, On superluminal tunneling, Prog. Quantum Electron. 27 (2003) 417–450.
    43. G. Nimtz, H. Aichmann, Zero-Time Tunneling-Revisited, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 72 (2017) 881–884.
    44. G. Nimtz, Macroscopic Virtual Particles Exist, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 74 (2019) 363–366.
    45. G. Nimtz, H. Aichmann, On timeless macroscopic spaces, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 78 (2023) 305–307.
    46. G. Nimtz, H. Aichmann, All waves have a zero tunneling time, Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci. 76 (2021) 295–297.
    47. S. Weinberg, Lectures on Quantum Mechanics, in: 2nd ed., Cambridge University Press, Cambridge, 2015: p. 376.
    48. J.O. Weatherall, Against dogma: On superluminal propagation in classical electromagnetism, Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 48 (2014) 109–123.
    49. A. Dragan, A. Ekert, Quantum principle of relativity, New J. Phys. 22 (2020) 033038.
    50. A. Dragan, K. Dębski, S. Charzyński, K. Turzyński, A. Ekert, Relativity of superluminal observers in 1 + 3 spacetime, Class. Quantum Gravity.40 (2023) 025013.
    51. D. Farrah, K.S. Croker, M. Zevin, G. Tarlé, V. Faraoni, S. Petty, J. Afonso, N. Fernandez, K.A. Nishimura, C. Pearson, L. Wang, D.L. Clements, A. Efstathiou, E. Hatziminaoglou, M. Lacy, C. McPartland, L.K. Pitchford, N. Sakai, J. Weiner, Observational Evidence for Cosmological Coupling of Black Holes and its Implications for an Astrophysical Source of Dark Energy, Astrophys. J. Lett. 944 (2023) L31.
    52. D. Farrah, S. Petty, K.S. Croker, G. Tarlé, M. Zevin, E. Hatziminaoglou, F. Shankar, L. Wang, D.L. Clements, A. Efstathiou, M. Lacy, K.A. Nishimura, J. Afonso, C. Pearson, L.K. Pitchford, A Preferential Growth Channel for Supermassive Black Holes in Elliptical Galaxies at z ≲ 2, Astrophys. J. 943 (2023) 133.
  • Downloads

  • How to Cite

    Markoulakis, E. (2023). The superluminous vacuum. International Journal of Physical Research, 11(1), 18-25.