Applications of Artificial Intelligence and Radiomics inContrast-Enhanced Mammography: A RecentSystematic Analysis
-
https://doi.org/10.14419/tckrxp49
Received date: December 4, 2025
Accepted date: January 2, 2026
Published date: January 8, 2026
-
Artificial Intelligence; Radiomics; Contrast-Enhancement Mammography -
Abstract
This systematic literature review investigates the recent advancements in the applications of Artificial Intelligence (AI) and Radiomics in Contrast-Enhanced Mammography (CEM), focusing on their diagnostic, predictive, and prognostic value in breast cancer imaging. The study aims to synthesize current evidence on the integration of AI-based algorithms and radiomic approaches that enhance lesion detection, classification, and clinical interpretation. The review follows the PRISMA protocol to ensure methodological rigor and transparency. A comprehensive search was conducted across Scopus and PubMed databases using the keywords contrast, mammography, and artificial intelligence, retrieving relevant studies published in 2025. After applying inclusion and exclusion criteria, 36 primary studies were selected for qualitative synthesis. The analysis identified three major thematic domains: (1) AI architectures and classification/detection models, (2) Radiomics and multi-modality predictive/prognostic models, and (3) Segmentation, microcalcification, and data-tooling for detection. The findings revealed that hybrid and ensemble deep learning models significantly improved diagnostic performance, while radiomics-based approaches enhanced molecular subtype prediction, risk stratification, and treatment planning. Furthermore, advances in segmentation and synthetic data augmentation improved lesion localization and model robustness, supporting more accurate and reproducible image interpretation. Despite methodological progress, challenges persist regarding data standardization, model explainability, and clinical validation across diverse populations. The review concludes that integrating AI and radiomics within CEM holds substantial potential for transforming breast cancer diagnostics by improving precision, interpretability, and clinical decision-making. Continued development of standardized frameworks and multicenter validation is essential to ensure reliable, ethical, and clinically applicable AI adoption in breast imaging practice.
-
References
- Abdelhalim, I., Almalki, Y., Abdallah, A., Karam, R., Alduraibi, S., Basha, M., Mohamed, H., Ghazal, M., Mahmoud, A., Alghamdi, N. S., Contractor, S., & El-Baz, A. (2025). A deep learning framework for accurate mammographic mass classification using local context attention module. Medical Physics, 52(10). https://doi.org/10.1002/mp.18119.
- Abouzahra, A., Sabraoui, A., & Afdel, K. (2020). Model composition in Model Driven Engineering: A systematic literature review. Information and Software Technology, 125(May), 106316. https://doi.org/10.1016/j.infsof.2020.106316.
- Beuque, M. P. L., Lobbes, M., van Wijk, Y., Widaatalla, Y., Primakov, S., Majer, M., Balleyguier, C., Woodruff, H. C., & Lambin, P. (2023). Combining Deep Learning and Handcrafted Radiomics for Classification of Suspicious Lesions on Contrast-enhanced Mammograms. Radiology, 307(5). https://doi.org/10.1016/j.infsof.2020.106316.
- B. Kitchenham, “Guidelines for performing systematic literature reviews in software engineering,” Tech. report, Ver. 2.3 EBSE Tech. Report. EBSE, 2007.
- Camp, A. V, Woodruff, H. C., Cockmartin, L., Lobbes, M., Majer, M., Balleyguier, C., Marshall, N. W., Bosmans, H., & Lambin, P. (2025). Impact of synthetic data on training a deep learning model for lesion detection and classification in contrast-enhanced mammography. Journal of Medical Imaging, 12. https://doi.org/10.1117/1.JMI.12.S2.S22006.
- Chen, H., & Martel, A. L. (2025). Enhancing breast cancer detection on screening mammogram using self-supervised learning and a hybrid deep model of Swin Transformer and convolutional neural networks. Journal of Medical Imaging, 12. https://doi.org/10.1117/1.JMI.12.S2.S22007
- Ciurescu, S., Cerbu, S., Dima, C. N., Borozan, F., Parvanescu, R., Ilaș, D.-G., Cîtu, C., Vernic, C., & Sas, I. (2025). AI in 2D Mammography: Improving Breast Cancer Screening Accuracy. Medicina (Lithuania), 61(5). https://doi.org/10.3390/medicina61050809.
- C. Lockwood, Z. Munn, and K. Porritt, “Qualitative research synthesis: Methodological guidance for systematic reviewers utilizing meta-aggregation,” Int. J. Evid. Based. Healthc., vol. 13, no. 3, pp. 179–187, 2015, https://doi.org/10.1097/XEB.0000000000000062.
- Ergün, U., Çoban, T., & Kayadibi, İ. (2025). BCECNN: an explainable deep ensemble architecture for accurate diagnosis of breast cancer. BMC Medical Informatics and Decision Making, 25(1). https://doi.org/10.1186/s12911-025-03186-2
- Hashem, L. M. B., Azzam, H. M., El-Gamal, G. S. A. E.-S., & Hanafy, M. M. (2025). Can artificial intelligence and contrast-enhanced mammography be of value in the assessment and characterization of breast lesions? Egyptian Journal of Radiology and Nuclear Medicine, 56(1). https://doi.org/10.1186/s43055-025-01455-8
- Idress, W. M., Abouda, K. A., Javed, R., Aoun, M., Yasin, Y., Shahzad, T., Mazhar, T., & Ibrahim, A. M. A. (2025). Hybrid segmentation and 3D Imaging: Comprehensive framework for breast cancer patient segmentation and classification based on digital breast tomosynthesis. Biomedical Signal Processing and Control, 100. https://doi.org/10.1016/j.bspc.2024.106992
- Ismail, F. A., Abdul Karim, M. K. A., Zaidon, S. I. A., & Noor, K. A. (2025). Application of Tuning-ensemble N-Best in Auto-Sklearn for Mammographic Radiomic Analysis for Breast Cancer Prediction. Current Medical Imaging, 21. https://doi.org/10.2174/0115734056400080250722024127
- Jochelson, M., & Lobbes, M. (2021). Contrast-enhanced Mammography: State of the Art. Radiology, 201948. https://doi.org/10.1148/radiol.2021201948
- Kinkar, K., Fields, B. K. K., Yamashita, M., & Varghese, B. (2024). Empowering breast cancer diagnosis and radiology practice: advances in artificial intelligence for contrast-enhanced mammography. Frontiers in Radiology, 3. https://doi.org/10.3389/fradi.2023.1326831.
- Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report, Ver. 2.3 EBSE Technical Report. EBSE.
- Krishna, S., Stancilas, S. S., Srinivasan, S. S., & Vijayakumar, D. K. (2025). Enhancing Breast Cancer Diagnosis With Attention Branch Network and Thermographic Imaging. International Journal of Imaging Systems and Technology, 35(5). https://doi.org/10.1002/ima.70195.
- la Moglia, A., & Almustafa, K. (2025). Breast cancer prediction using machine learning classification algorithms. Intelligence-Based Medicine, 11. https://doi.org/10.1016/j.ibmed.2024.100193.
- Lafcı, O., Akkur, E., Celepli, P., Öztekin, P. S., Eroğul, O., & Koşar, P. N. (2025). Application of Radiomics Analysis on Mammography for Differentiating Benign and Malignant Masses. SN Comprehensive Clinical Medicine, 7(1). https://doi.org/10.1117/1.JMI.12.1.014501.
- Letchumanan, N., Hanaoka, S., Takenaga, T., Suzuki, Y., Nakao, T., Nomura, Y., Yoshikawa, T., & Abe, O. (2025). Predicting the risk of type 2 diabetes mellitus (T2DM) emergence in 5 years using mammography images: a comparison study between radiomics and deep learning algorithm. Journal of Medical Imaging, 12(1). https://doi.org/10.1117/1.JMI.12.1.014501.
- Li, P., Zhong, J., Chen, H., Hong, J., Li, H., Li, X., & Shi, P. (2025). An explainable and comprehensive BI-RADS assisted diagnosis pipeline for mammograms. Physica Medica, 132. https://doi.org/10.1016/j.ejmp.2025.104949.
- Liu, C., Patel, P., Arefan, D., Zuley, M., Sumkin, J., & Wu, S. (2025). A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast Cancer Biopsy Outcome Prediction. Academic Radiology, 32(5), 2438–2449. https://doi.org/10.1016/j.acra.2024.12.051
- Ma, M., Xu, W., Yang, J., Zheng, B., Wen, C., Wang, S., Xu, Z., Qin, G., & Chen, W. (2025). Contrast-enhanced mammography-based interpretable machine learning model for the prediction of the molecular subtype breast cancers. BMC Medical Imaging, 25(1). https://doi.org/10.1186/s12880-025-01765-3.
- Mansour, S., Kamal, R., Hussein, S. A., Emara, M., Kassab, Y., Taha, S. N., & Gomaa, M. M. M. (2025). Enhancing detection of previously missed non-palpable breast carcinomas through artificial intelligence. European Journal of Radiology Open, 14. https://doi.org/10.1016/j.ejro.2024.100629
- Mansour, S., Mokhtar, O., Abd El Galil, M.-A. S. M., Taha, S. N., & Shetat, O. M. M. (2025). Artificial intelligence reading digital mammogram: enhancing detection and differentiation of suspicious microcalcifications. British Journal of Radiology, 98(1166), 246–253. https://doi.org/10.1093/bjr/tqae220
- Massafra, R., Bove, S., Lorusso, V., Biafora, A., Comes, M. C., Didonna, V., Diotaiuti, S., Fanizzi, A., Nardone, A., Nolasco, A., Ressa, C. M., Tamborra, P., Terenzio, A., & La Forgia, D. (2021). Radiomic feature reduction approach to predict breast cancer by contrast-enhanced spectral mammography images. Diagnostics, 11(4). https://doi.org/10.3390/diagnostics11040684
- M. J. Page et al., “The prisma 2020 statement: An updated guideline for reporting systematic reviews,” Med. Flum., vol. 57, no. 4, pp. 444–465, 2021, https://doi.org/10.21860/medflum2021_264903.
- Mun, Y. S., & Sam, T. L. (2022). ONLINE LEARNING MOTIVATION DURING COVID-19 PANDEMIC: THE ROLE OF LEARNING ENVIRONMENT, STUDENT SELF-EFFICACY AND LEARNER-INSTRUCTOR INTERACTION. Malaysian Journal of Learning and Instruction, 19(2), 213–249. https://doi.org/10.32890/mjli2022.19.2.8
- Nicosia, L., Bozzini, A. C., Ballerini, D., Palma, S., Pesapane, F., Raimondi, S., Gaeta, A., Bellerba, F., Origgi, D., De Marco, P., Castiglione Minischetti, G., Sangalli, C., Meneghetti, L., Curigliano, G., & Cassano, E. (2022). Radiomic Features Applied to Contrast Enhancement Spectral Mammography: Possibility to Predict Breast Cancer Molecular Subtypes in a Non-Invasive Manner. International Journal of Molecular Sciences, 23(23). https://doi.org/10.3390/ijms232315322
- Nicosia, L., Mariano, L., Gaeta, A., Raimondi, S., Pesapane, F., Corso, G., De Marco, P., Origgi, D., Sangalli, C., Bianco, N., Carriero, S., Santicchia, S., & Cassano, E. (2025). Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography for Prognostic Prediction of Breast Cancer. Cancers, 17(12). https://doi.org/10.3390/cancers17121926
- Niranjana, R., Ravi, A., & Sivadasan, J. (2025). Performance analysis of novel hybrid deep learning model IEU Net++ for multiclass categorization of breast mammogram images. Biomedical Signal Processing and Control, 105. https://doi.org/10.1016/j.bspc.2025.107607
- Nour, A., & Boufama, B. (2025). Hybrid deep learning and active contour approach for enhanced breast lesion segmentation and classification in mammograms. Intelligence-Based Medicine, 11. https://doi.org/10.1016/j.ibmed.2025.100224.
- Pacal, I., & Attallah, O. (2025). InceptionNeXt-Transformer: A novel multi-scale deep feature learning architecture for multimodal breast cancer diagnosis. Biomedical Signal Processing and Control, 110. https://doi.org/10.1016/j.bspc.2025.108116
- Panambur, A. B., Bhat, S., Yu, H., Madhu, P., Bayer, S., & Maier, A. (2025). Attention-guided erasing for enhanced transfer learning in breast abnormality classification. International Journal of Computer Assisted Radiology and Surgery, 20(3), 433–440. https://doi.org/10.1007/s11548-024-03317-6
- Pesapane, F., De Marco, P., Rapino, A., Lombardo, E., Nicosia, L., Tantrige, P., Rotili, A., Bozzini, A., Penco, S., Dominelli, V., Trentin, C., Ferrari, F., Farina, M., Meneghetti, L., Latronico, A., Abbate, F., Origgi, D., Carrafiello, G., & Cassano, E. (2023). How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. Journal of Clinical Medicine, 12. https://doi.org/10.3390/jcm12041372
- Petrillo, A., Fusco, R., Petrosino, T., Vallone, P., Granata, V., Rubulotta, M. R., Pariante, P., Raiano, N., Scognamiglio, G., Fanizzi, A., Massafra, R., Lafranceschina, M., La Forgia, D., Greco, L., Ferranti, F. R., de Soccio, V., Vidiri, A., Botta, F., Dominelli, V., … Boldrini, L. (2024). A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer. Radiologia Medica, 129(6), 864–878. https://doi.org/10.1007/s11547-024-01817-8
- Puttegowda, K., Anil Kumar, D., Ravi, V., Veeraprathap, V., Ravi, P., Yathiraj, G. R., & Sunil Kumar, D. S. (2025). Advanced Machine Learning Techniques for Prognostic Analysis in Breast Cancer. Open Bioinformatics Journal, 18. https://doi.org/10.2174/0118750362356119250121072106.
- Ra, S., Kim, J., Na, I., Ko, E. S., & Park, H. (2025). Enhancing radiomics features via a large language model for classifying benign and malignant breast tumors in mammography. Computer Methods and Programs in Biomedicine, 265. https://doi.org/10.1016/j.cmpb.2025.108765
- Satake, H., Kinoshita, F., Ishigaki, S., Kato, K., Jo, Y., Shimada, S., Masuda, N., & Naganawa, S. (2025). Predictive Performance of Radiomic Features Extracted from Breast MR Imaging in Postoperative Upgrading of Ductal Carcinoma in Situ to Invasive Carcinoma. Magnetic Resonance in Medical Sciences, 24(4). https://doi.org/10.2463/mrms.mp.2023-0168.
- Shi, L., Liu, X., Lai, J., Lu, F., Gu, L., & Zhong, L. (2025). Development and validation of an intratumoral-peritumoral deep transfer learning fusion model for differentiating BI-RADS 3–4 breast nodules. Gland Surgery, 14(4), 658–669. https://doi.org/10.21037/gs-24-457
- Sierra-Franco, C. A., Hurtado, J., De, V., da Cruz, L. C., Silva, S. V, Silva-Calpa, G. F. M., & Raposo, A. (2025). Towards Automated Semantic Segmentation in Mammography Images for Enhanced Clinical Applications. Journal of Imaging Informatics in Medicine, 38(4), 2260–2280. https://doi.org/10.1007/s10278-024-01364-8
- Van Camp, A., Punter, E., Houbrechts, K., Cockmartin, L., Prevos, R., Marshall, N. W., Woodruff, H. C., Lambin, P., & Bosmans, H. (2025). An automated toolbox for microcalcification cluster modeling for mammographic imaging. Medical Physics, 52(2), 1335–1349. https://doi.org/10.1002/mp.17521
- Varshney, T., Verma, K., Kaur, A., & Puri, S. K. (2025). Hybrid and optimized feature fusion for enhanced breast cancer classification. Network Modeling Analysis in Health Informatics and Bioinformatics, 14(1). https://doi.org/10.1007/s13721-025-00573-7
- Vijetha, J. K., Jude, J., & KanthiThilaka, M. K. (2025). A Sisters Similarity Neural Network SSNN Model for Generalization and Detection of Mammographic Breast Cancer Lesion Abnormalities. Journal of Cancer Research Updates, 14, 181–195. https://doi.org/10.30683/1929-2279.2025.14.20
- Wang, F., Zou, Z., Sakla, N., Partyka, L., Rawal, N., Singh, G., Zhao, W., Ling, H., Huang, C., Prasanna, P., & Chen, C. (2025). TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs. Medical Image Analysis, 99. https://doi.org/10.1016/j.media.2024.103373.
- Wang, Q., Zhang, Z.-Q., Huang, C.-C., Xue, H.-W., Zhang, H., Bo, F., Guan, W.-T., Zhou, W., & Bai, G.-J. (2025). Dual-Modality Virtual Biopsy System Integrating MRI and MG for Noninvasive Predicting HER2 Status in Breast Cancer. Academic Radiology, 32(7), 3858–3869. https://doi.org/10.1016/j.acra.2025.02.039
- Wang, S., Sun, Y., Li, R., Mao, N., Li, Q., Jiang, T., Chen, Q., Duan, S., Xie, H., & Gu, Y. (2021). Diagnostic performance of perilesional radiomics analysis of contrast-enhanced mammography for the differentiation of benign and malignant breast lesions. European Radiology, 32, 639–649. https://doi.org/10.1007/s00330-021-08134-y.
- Wang, X., Tan, T., Gao, Y., Su, R., Teuwen, J., Kroes, J., Zhang, T., D’Angelo, A., Han, L., Drukker, C. A., Schmidt, M. K., Beets-Tan, R., Karssemeijer, N., & Mann, R. (2025). Predicting short- to long-term breast cancer risk from longitudinal mammographic screening history. Npj Breast Cancer, 11(1). https://doi.org/10.1038/s41523-025-00831-x.
- Wu, J., Li, Y., Gong, W., Li, Q., Han, X., & Zhang, T. (2025). Multi-modality radiomics diagnosis of breast cancer based on MRI, ultrasound and mammography. BMC Medical Imaging, 25(1). https://doi.org/10.1186/s12880-025-01767-1.
- Xu, W., Zheng, B., Wen, C., Zeng, H., Wang, S., He, Z., Liao, X., Chen, W., Li, Y., & Qin, G. (2025). Enhancing Specificity in Predicting Axillary Lymph Node Metastasis in Breast Cancer through an Interpretable Machine Learning Model with CEM and Ultrasound Integration. Technology in Cancer Research and Treatment, 24. https://doi.org/10.1177/15330338251334735.
- Yang, X., Li, J., Sun, H., Chen, J., Xie, J., Peng, Y., Shang, T., & Pan, T. (2025). Radiomics Integration of Mammography and DCE-MRI for Predicting Molecular Subtypes in Breast Cancer Patients. Breast Cancer: Targets and Therapy, 17, 187–200. https://doi.org/10.2147/BCTT.S488200
- Zhang, D., Dihge, L., Bendahl, P.-O., Arvidsson, I., Dustler, M., Ellbrant, J., Gulis, K., Hjärtström, M., Ohlsson, M., Rejmer, C., Schmidt, D., Zackrisson, S., Edén, P., & Rydén, L. (2025). Deep learning on routine full-breast mammograms enhances lymph node metastasis prediction in early breast cancer. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01831-8
- Zhang, H., Lin, F., Zheng, T., Gao, J., Wang, Z., Zhang, K., Zhang, X., Xu, C., Zhao, F., Xie, H., Li, Q., Cao, K., Gu, Y., & Mao, N. (2024). Artificial intelligence-based classification of breast lesion from contrast enhanced mammography: a multicenter study. International Journal of Surgery, 110(5), 2593–2603. https://doi.org/10.1097/JS9.0000000000001076
- Zhu, S., Wang, S., Guo, S., Wu, R., Zhang, J., Kong, M., Pan, L., Gu, Y., & Yu, S. (2023). Contrast-Enhanced Mammography Radiomics Analysis for Preoperative Prediction of Breast Cancer Molecular Subtypes. Academic Radiology. https://doi.org/10.1016/j.acra.2023.12.005.
-
Downloads
-
How to Cite
Mohd Zain, N., & Mustafa, W. A. (2026). Applications of Artificial Intelligence and Radiomics inContrast-Enhanced Mammography: A RecentSystematic Analysis. International Journal of Basic and Applied Sciences, 15(1), 20-31. https://doi.org/10.14419/tckrxp49
