Exploring Quantum Gravity Effects in Elliptical Galaxies: ATheoretical Perspective on ‎M87 and M49

  • Authors

    https://doi.org/10.14419/nh9t6951

    Received date: October 26, 2025

    Accepted date: January 9, 2026

    Published date: January 9, 2026

  • Dark Matter; Elliptical Galaxies; Gravitational Potential; Jeans Equation; M49; M87; Quantum ‎Gravity; Velocity Dispersion; Virgo Clusters‎.
  • Abstract

    This paper investigates the application of Quantum Gravity Theory (QGT) to the dynamics of ‎elliptical galaxies, with a primary focus on the well-observed systems M87 and M49. Based ‎on the theoretical framework proposed by Wong et al. (2014), which integrates relativity ‎theory and quantum theory, QGT offers a novel explanation for galactic dynamics without ‎invoking dark matter. The theory posits that quantum gravitational effects, including the ‎exchange of gravitons and antigravitons, produce an effective antigravity phenomenon in the ‎outer regions of galaxies, mimicking the dynamical influence traditionally attributed to dark ‎matter. We apply the QGT potential to model the kinematic data of M87 and M49, two ‎massive elliptical galaxies with extensive observational constraints.‎

    We derive the QGT-modified Jeans equation, incorporating the QGT potential (‎ ‎) to ‎predict velocity dispersion profiles. By rigorously accounting for baryonic mass—including ‎the intra-cluster medium (ICM)—we achieve fits to data spanning 0.5–150 kpc using the ‎stellar mass-to-light ratio as a free parameter. Bayesian analysis reveals decisive statistical ‎superiority over NFW (ΔBIC > 13) and MOND models (ΔBIC > 9). ‎

    These results suggest that QGT, rooted in the fundamental principles of modern physics, ‎offers a compelling alternative explanation for the dynamics of elliptical galaxies. By ‎successfully modeling M87 and M49 without dark matter, this study challenges the necessity ‎of the dark matter hypothesis in these galactic systems and opens new avenues for exploring ‎quantum aspects of gravity at astrophysical scales

    Author Biography

    • Wing keung Wong, Independent Researcher

      An independent researcher explores gravitational physics through the lens of quantum field theory. Recent work focuses on developing and testing Quantum Gravity Theory (QGT), a parameter-free framework aimed at explaining galactic dynamics without invoking dark matter. Drawing on observational data and theoretical modeling, and seeking to understand how curvature fields derived from graviton-antigraviton interactions might offer new insights into galaxy formation, rotation curves, and spacetime structure, I emphasize empirical validation, mathematical clarity, and openness to falsifiability.

  • References

    1. Alabi, A. B., Forbes, D. A., Romanowsky, A. J., Brodie, J. P., et al. (2016). The SLUGGS survey: the mass distribution in early-type galaxies within five effective radii and beyond. Monthly Notices of the Royal Astronomical Society, 460(4), 3838–3860. https://doi.org/10.1093/mnras/stw1213.
    2. Bacon, R., Copin, Y., Monnet, G., Miller, B. W., et al. (2001). The SAURON project – I. The panoramic integral-field spectrograph. Monthly Notices of the Royal Astronomical Society, 326(1), 23–35. https://doi.org/10.1046/j.1365-8711.2001.04612.x.
    3. Bekenstein, J. D. (2004). Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Physical Review D, 70(8), 083509. https://doi.org/10.1103/PhysRevD.70.083509.
    4. Bianchi, E., & Myers, R. C. (2014). On the architecture of spacetime geometry. Classical and Quantum Gravity, 31(21), 214002. https://doi.org/10.1088/0264-9381/31/21/214002
    5. Binney, J., & Mamon, G. A. (1982) M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole. Monthly Notices of the Royal Astronomical Society 200(2):361-375. https://doi.org/10.1093/mnras/200.2.361.
    6. Binney, J., & Tremaine, S. (2008). Galactic dynamics (2nd ed.). Princeton University Press. https://doi.org/10.1515/9781400828722.
    7. Brook, M. N., & Coles, P. (2022). Gravitational stability of vortices in Bose-Einstein condensate dark matter. The Open Journal of Astrophysics, 5 https://doi.org/10.21105/astro.0902.0605.
    8. Churazov, E., Forman, W., Vikhlinin, A., et al. (2008). Measuring the non-thermal pressure in early-type galaxy atmospheres: a comparison of X-ray and optical potential profiles in M87 and NGC 1399. Monthly Notices of the Royal Astronomical Society, Vol.388, Issue 3, pp.1062. https://doi.org/10.1111/j.1365-2966.2008.13507.x.
    9. Conroy, C., & van Dokkum, P. G. (2012). The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. The Astrophysical Journal, 760(1), 71. https://doi.org/10.1088/0004-637X/760/1/71
    10. de Blok, W. J. G. (2010). The core–cusp problem. Advances in Astronomy, 2010, 789293. https://doi.org/10.1155/2010/789293.
    11. Devoret, M. H. & Schoelkopf, R. J. (2013). Superconducting Circuits for Quantum Information: An Outlook. Science, 339(6124), 1169-1174. https://doi.org/10.1126/science.1231930.
    12. Di Valentino, E., Mena, O., Mota, D.F., et al. (2021). In the realm of the Hubble tension—a review of solutions. Classical and Quantum Gravity, Vol. 38, No.15. https://doi.org/10.1088/1361-6382/ac086d.
    13. Gerhard, O., Kronawitter, A., Saglia, R. P., & Bender, R. (2001). Dynamical family properties and dark halo scaling relations of giant elliptical galax-ies. The Astronomical Journal, 121(4), 1936–1951. https://doi.org/10.1086/319940.
    14. Harris, W. E. (2009). The globular cluster system in M87: A wide-field study with CFHT/MEGACAM. The Astronomical Journal, 138(2), 402–417. https://doi.org/10.1088/0004-637X/703/1/939.
    15. Kormendy, J., & Ho, L. C. (2013). Coevolution of supermassive black holes and host galaxies. Annual Review of Astronomy and Astrophysics, 51, 511–653. https://doi.org/10.1146/annurev-astro-082708-101811.
    16. Mamon, G. A., & Łokas, E. L. (2005). Dark matter in elliptical galaxies – II. Estimating the mass within the virial radius. Monthly Notices of the Royal Astronomical Society, 363(3), 705–722. https://doi.org/10.1111/j.1365-2966.2005.09400.x
    17. McGee, S. L. (2013). The strong environmental dependence of black hole scaling relations. Monthly Notices of the Royal Astronomical Society, 436(3), 2708–2721. https://doi.org/10.1093/mnras/stt1769.
    18. McGee, S. L., Bower, R. G., & Balogh, M. L. (2014). Overconsumption, outflows and the quenching of satellite galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 442(1), L105–L109. https://doi.org/10.1093/mnrasl/slu066.
    19. Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 270, 365. https://doi.org/10.1086/161130.
    20. Murphy, J. D., Gebhardt, K., & Cradit, M. (2014). The rising stellar velocity dispersion of M87 from integrated starlight. The Astrophysical Journal, 785(2), 143. https://doi.org/10.1088/0004-637X/785/2/143.
    21. Nye, L. (2024). The emergence of time from quantum information dynamics. Journal of High Energy Physics, Gravitation and Cosmology, 10(4), 1981–2006. https://doi.org/10.4236/jhepgc.2024.104109.
    22. Pota, V., Forbes, D. A., Romanowsky, A. J., Brodie, J. P., et al. (2013). The SLUGGS survey: Kinematics for over 2500 globular clusters in 12 early-type galaxies. Monthly Notices of the Royal Astronomical Society, 428(1), 389–420. https://doi.org/10.1093/mnras/sts029.
    23. Sanders, R. H. (2003), Clusters of galaxies with Modified Newtonian Dynamics. Monthly Notices of the Royal Astronomical Society, 342(3), 901. https://doi.org/10.1046/j.1365-8711.2003.06596.x
    24. Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1), 99–102. https://doi.org/10.1016/0370-2693(80)90670-X
    25. Strader, J., Romanowsky, A. J., Brodie, J. P., Spitler, L. R., et al. (2011). Wide-field precision kinematics of the M87 globular cluster system. The As-trophysical Journal Supplement Series, 197(2), 33. https://doi.org/10.1088/0067-0049/197/2/33.
    26. Takayanagi, T. (2025). Emergent holographic spacetime from quantum information. Physical Review Letters, 134(24), 240001. https://doi.org/10.1103/pg4r-fy8n
    27. Umetsu, K. (2020), Cluster–galaxy weak lensing. The Astronomy and Astrophysics Review, 28, 7. https://doi.org/10.1007/s00159-020-00129-w.
    28. Wong, W. H., Wong, W. T., Wong, W. K., & Wong, L. M. (2014). Discovery of the Antigraviton Verified by the Rotation Curve of NGC 6503. In-ternational Journal of Advanced Astronomy, 2(1), 1–7. https://doi.org/10.14419/ijaa.v2i1.2244
    29. Wong, W. T., & Wong, W. K. (2025). Quantum Gravity Theory Across Eight Galaxies: Precision Validation in NGC 925 and NGC 1569. Interna-tional Journal of Physical Research, 13(2) (2025) 25-36. https://doi.org/10.14419/z6vd0789.
  • Downloads

  • How to Cite

    Wong, W. keung, & WONG, W.- to. (2026). Exploring Quantum Gravity Effects in Elliptical Galaxies: ATheoretical Perspective on ‎M87 and M49. International Journal of Basic and Applied Sciences, 15(1), 32-43. https://doi.org/10.14419/nh9t6951