Exploring Quantum Gravity Effects in Elliptical Galaxies: ATheoretical Perspective on M87 and M49
-
https://doi.org/10.14419/nh9t6951
Received date: October 26, 2025
Accepted date: January 9, 2026
Published date: January 9, 2026
-
Dark Matter; Elliptical Galaxies; Gravitational Potential; Jeans Equation; M49; M87; Quantum Gravity; Velocity Dispersion; Virgo Clusters. -
Abstract
This paper investigates the application of Quantum Gravity Theory (QGT) to the dynamics of elliptical galaxies, with a primary focus on the well-observed systems M87 and M49. Based on the theoretical framework proposed by Wong et al. (2014), which integrates relativity theory and quantum theory, QGT offers a novel explanation for galactic dynamics without invoking dark matter. The theory posits that quantum gravitational effects, including the exchange of gravitons and antigravitons, produce an effective antigravity phenomenon in the outer regions of galaxies, mimicking the dynamical influence traditionally attributed to dark matter. We apply the QGT potential to model the kinematic data of M87 and M49, two massive elliptical galaxies with extensive observational constraints.
We derive the QGT-modified Jeans equation, incorporating the QGT potential ( ) to predict velocity dispersion profiles. By rigorously accounting for baryonic mass—including the intra-cluster medium (ICM)—we achieve fits to data spanning 0.5–150 kpc using the stellar mass-to-light ratio as a free parameter. Bayesian analysis reveals decisive statistical superiority over NFW (ΔBIC > 13) and MOND models (ΔBIC > 9).
These results suggest that QGT, rooted in the fundamental principles of modern physics, offers a compelling alternative explanation for the dynamics of elliptical galaxies. By successfully modeling M87 and M49 without dark matter, this study challenges the necessity of the dark matter hypothesis in these galactic systems and opens new avenues for exploring quantum aspects of gravity at astrophysical scales
-
References
- Alabi, A. B., Forbes, D. A., Romanowsky, A. J., Brodie, J. P., et al. (2016). The SLUGGS survey: the mass distribution in early-type galaxies within five effective radii and beyond. Monthly Notices of the Royal Astronomical Society, 460(4), 3838–3860. https://doi.org/10.1093/mnras/stw1213.
- Bacon, R., Copin, Y., Monnet, G., Miller, B. W., et al. (2001). The SAURON project – I. The panoramic integral-field spectrograph. Monthly Notices of the Royal Astronomical Society, 326(1), 23–35. https://doi.org/10.1046/j.1365-8711.2001.04612.x.
- Bekenstein, J. D. (2004). Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Physical Review D, 70(8), 083509. https://doi.org/10.1103/PhysRevD.70.083509.
- Bianchi, E., & Myers, R. C. (2014). On the architecture of spacetime geometry. Classical and Quantum Gravity, 31(21), 214002. https://doi.org/10.1088/0264-9381/31/21/214002
- Binney, J., & Mamon, G. A. (1982) M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole. Monthly Notices of the Royal Astronomical Society 200(2):361-375. https://doi.org/10.1093/mnras/200.2.361.
- Binney, J., & Tremaine, S. (2008). Galactic dynamics (2nd ed.). Princeton University Press. https://doi.org/10.1515/9781400828722.
- Brook, M. N., & Coles, P. (2022). Gravitational stability of vortices in Bose-Einstein condensate dark matter. The Open Journal of Astrophysics, 5 https://doi.org/10.21105/astro.0902.0605.
- Churazov, E., Forman, W., Vikhlinin, A., et al. (2008). Measuring the non-thermal pressure in early-type galaxy atmospheres: a comparison of X-ray and optical potential profiles in M87 and NGC 1399. Monthly Notices of the Royal Astronomical Society, Vol.388, Issue 3, pp.1062. https://doi.org/10.1111/j.1365-2966.2008.13507.x.
- Conroy, C., & van Dokkum, P. G. (2012). The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. The Astrophysical Journal, 760(1), 71. https://doi.org/10.1088/0004-637X/760/1/71
- de Blok, W. J. G. (2010). The core–cusp problem. Advances in Astronomy, 2010, 789293. https://doi.org/10.1155/2010/789293.
- Devoret, M. H. & Schoelkopf, R. J. (2013). Superconducting Circuits for Quantum Information: An Outlook. Science, 339(6124), 1169-1174. https://doi.org/10.1126/science.1231930.
- Di Valentino, E., Mena, O., Mota, D.F., et al. (2021). In the realm of the Hubble tension—a review of solutions. Classical and Quantum Gravity, Vol. 38, No.15. https://doi.org/10.1088/1361-6382/ac086d.
- Gerhard, O., Kronawitter, A., Saglia, R. P., & Bender, R. (2001). Dynamical family properties and dark halo scaling relations of giant elliptical galax-ies. The Astronomical Journal, 121(4), 1936–1951. https://doi.org/10.1086/319940.
- Harris, W. E. (2009). The globular cluster system in M87: A wide-field study with CFHT/MEGACAM. The Astronomical Journal, 138(2), 402–417. https://doi.org/10.1088/0004-637X/703/1/939.
- Kormendy, J., & Ho, L. C. (2013). Coevolution of supermassive black holes and host galaxies. Annual Review of Astronomy and Astrophysics, 51, 511–653. https://doi.org/10.1146/annurev-astro-082708-101811.
- Mamon, G. A., & Łokas, E. L. (2005). Dark matter in elliptical galaxies – II. Estimating the mass within the virial radius. Monthly Notices of the Royal Astronomical Society, 363(3), 705–722. https://doi.org/10.1111/j.1365-2966.2005.09400.x
- McGee, S. L. (2013). The strong environmental dependence of black hole scaling relations. Monthly Notices of the Royal Astronomical Society, 436(3), 2708–2721. https://doi.org/10.1093/mnras/stt1769.
- McGee, S. L., Bower, R. G., & Balogh, M. L. (2014). Overconsumption, outflows and the quenching of satellite galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 442(1), L105–L109. https://doi.org/10.1093/mnrasl/slu066.
- Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal, 270, 365. https://doi.org/10.1086/161130.
- Murphy, J. D., Gebhardt, K., & Cradit, M. (2014). The rising stellar velocity dispersion of M87 from integrated starlight. The Astrophysical Journal, 785(2), 143. https://doi.org/10.1088/0004-637X/785/2/143.
- Nye, L. (2024). The emergence of time from quantum information dynamics. Journal of High Energy Physics, Gravitation and Cosmology, 10(4), 1981–2006. https://doi.org/10.4236/jhepgc.2024.104109.
- Pota, V., Forbes, D. A., Romanowsky, A. J., Brodie, J. P., et al. (2013). The SLUGGS survey: Kinematics for over 2500 globular clusters in 12 early-type galaxies. Monthly Notices of the Royal Astronomical Society, 428(1), 389–420. https://doi.org/10.1093/mnras/sts029.
- Sanders, R. H. (2003), Clusters of galaxies with Modified Newtonian Dynamics. Monthly Notices of the Royal Astronomical Society, 342(3), 901. https://doi.org/10.1046/j.1365-8711.2003.06596.x
- Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1), 99–102. https://doi.org/10.1016/0370-2693(80)90670-X
- Strader, J., Romanowsky, A. J., Brodie, J. P., Spitler, L. R., et al. (2011). Wide-field precision kinematics of the M87 globular cluster system. The As-trophysical Journal Supplement Series, 197(2), 33. https://doi.org/10.1088/0067-0049/197/2/33.
- Takayanagi, T. (2025). Emergent holographic spacetime from quantum information. Physical Review Letters, 134(24), 240001. https://doi.org/10.1103/pg4r-fy8n
- Umetsu, K. (2020), Cluster–galaxy weak lensing. The Astronomy and Astrophysics Review, 28, 7. https://doi.org/10.1007/s00159-020-00129-w.
- Wong, W. H., Wong, W. T., Wong, W. K., & Wong, L. M. (2014). Discovery of the Antigraviton Verified by the Rotation Curve of NGC 6503. In-ternational Journal of Advanced Astronomy, 2(1), 1–7. https://doi.org/10.14419/ijaa.v2i1.2244
- Wong, W. T., & Wong, W. K. (2025). Quantum Gravity Theory Across Eight Galaxies: Precision Validation in NGC 925 and NGC 1569. Interna-tional Journal of Physical Research, 13(2) (2025) 25-36. https://doi.org/10.14419/z6vd0789.
-
Downloads
-
How to Cite
Wong, W. keung, & WONG, W.- to. (2026). Exploring Quantum Gravity Effects in Elliptical Galaxies: ATheoretical Perspective on M87 and M49. International Journal of Basic and Applied Sciences, 15(1), 32-43. https://doi.org/10.14419/nh9t6951
