Integrating Z-Score and GIS-Based Methods for Road Accident-‎Prone Segment Identification

  • Authors

    • Wahyu Satyaning Budhi Department of Civil Engineering, Politeknik Negeri Banyuwangi, Banyuwangi, East Java, Indonesia
    • Wahyu Naris Wari Department of Civil Engineering, Politeknik Negeri Banyuwangi, Banyuwangi, East Java, Indonesia
    • M. Shofi'ul Amin Department of Civil Engineering, Politeknik Negeri Banyuwangi, Banyuwangi, East Java, Indonesia
    • Ahmad Utanaka Department of Civil Engineering, Politeknik Negeri Banyuwangi, Banyuwangi, East Java, Indonesia
    • Hera Widyastuti Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
    https://doi.org/10.14419/1b78mm15

    Received date: October 20, 2025

    Accepted date: October 30, 2025

    Published date: November 6, 2025

  • Geographic Information System (GIS); Hotspot Analysis; Traffic Accident; Z-Score Method
  • Abstract

    The rapid development of road infrastructure today presents significant challenges in ensuring road safety. The National Road III section ‎from Kabat to the Banyuwangi City Boundary has shown a concerning trend in traffic accidents, highlighting the need to identify accident ‎locations. This study employed secondary data obtained from the Banyuwangi Police traffic unit accident reports. The research analysis was ‎conducted in two phases. First, the Z-score method was utilized to identify accident road segments through statistical evaluation. Subsequently, Hotspot Analysis (Getis-Ord Gi*) integrated with Geographic Information System (GIS) was applied to map and verify the spatial ‎clustering of accidents. Both methods consistently identified two critical segments out of 25 road sections (each 200 meters in length). These ‎were located at STA 5+200 – 5+400 with a 95% risk level and STA 8+400 – 8+600 with a 90% risk level, while the remaining segments ‎did not show statistically significant clustering of accidents. The consistency of results across both methods strengthens the reliability of the ‎findings, underscoring the importance of targeted safety interventions and accident mitigation strategies in these high-risk zones.

  • References

    1. W. S. Budhi, A. Utanaka, I. K. H. Wiryasuta, and H. Widyastuti, “Identifying Traffic Accident Trends and Black Spot Locations on National Road (A Case Study: Rogojampi-Kabat, Banyuwangi),” in International Conference on Architecture and Civil Engineering Conference, 2023, pp. 683–695. https://doi.org/10.1007/978-981-97-0751-5_60.
    2. J. R. Meijer, M. A. J. Huijbregts, K. C. G. J. Schotten, and A. M. Schipper, “Global patterns of current and future road infrastructure,” Environ. Res. Lett., vol. 13, no. 6, p. 64006, 2018, https://doi.org/10.1088/1748-9326/aabd42.
    3. S. D. Prihapsari et al., Informasi Statistik Infrastruktur PUPR 2022. Jakarta: Kementerian Pekerjaan Umum & Perumahan Rakyat, 1022.
    4. H. Widyastuti and W. S. Budhi, “Railway capacity analysis using Indonesian method and UIC code 405 method,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 930, no. 1. https://doi.org/10.1088/1757-899X/930/1/012059.
    5. Direktorat Keselamatan Transportasi Darat, Pedoman Operasi Accident Blackspot Investigation Unit/ Unit Penelitian Kecelakaan Lalulintas (Abiu/Upk). Jakarta: Direktorat Jenderal Perhubungan Darat, 2007.
    6. Machsus, I. Prayogo, Chomaedhi, D. W. Hayati, and A. Utanaka, “Road safety analysis on Achmad Yani frontage road Surabaya,” in IOP Conference Series: Materials Science and Engineering, 2017, vol. 267, no. 1, pp. 1–11. https://doi.org/10.1088/1757-899X/267/1/012027.
    7. I. W. Agustin, C. Meidiana, and S. Muljaningsih, “Studi Simulasi Model Kecelakaan Pengendara Mobil untuk Meningkatkan Keselamatan Lalu Lintas di Daerah Perkotaan,” War. Penelit. Perhub., vol. 32, no. 2, pp. 93–102, 2020, https://doi.org/10.25104/warlit.v32i2.1513.
    8. A. Utanaka and W. S. Budhi, “Identifying Accident Severity Factor on Surabaya Secondary Arterial Roads,” Int. J. Transp. Infrastruct., vol. 6, no. 1, pp. 30–37, 2022.
    9. V. N. Arung and H. Widyastuti, “Penentuan Daerah Rawan Kecelakaan Lalu Lintas di Kota Surabaya,” J. Apl. Tek. Sipil, vol. 18, no. 1, p. 17, 2020, https://doi.org/10.12962/j2579-891X.v18i1.5328.
    10. S. B. Pamungkas, A. MHM, and Setiono, “Analisis Lokasi Rawan Kecelakaan Di Jalan Arteri Primer Kota Surakarta,” Matriks Tek. Sipil, vol. 5, no. 4, pp. 1199–1206, 2017.
    11. L. Srikanth and I. Srikanth, “A Case Study on Kernel Density Estimation and Hotspot Analysis Methods in Traffic Safety Management,” in International Conference on Communication Systems and NETworkS (COMSNETS), 2020, no. January, pp. 99–104. https://doi.org/10.1109/COMSNETS48256.2020.9027448.
    12. D. L. Srikanth, I. Srikanth, and D. M. Arockiasamy, “Identification of Traffic Accident Hotspots using Geographical Information System (GIS),” Int. J. Eng. Adv. Technol., vol. 9, no. 2, pp. 4429–4438, 2019, https://doi.org/10.35940/ijeat.B3848.129219.
  • Downloads

  • How to Cite

    Budhi, W. S., Wari, W. N., Amin, M. S., Utanaka, A., & Widyastuti, H. (2025). Integrating Z-Score and GIS-Based Methods for Road Accident-‎Prone Segment Identification. International Journal of Basic and Applied Sciences, 14(7), 213-218. https://doi.org/10.14419/1b78mm15