Fractional-Order Modeling and Neural Network Simulation of NK Cell-Oncolytic Virus Interactions
-
https://doi.org/10.14419/9pjcye33
Received date: October 16, 2025
Accepted date: November 22, 2025
Published date: December 4, 2025
-
Oncolytic Virotherapy; Mathematical Modeling; Discrete Fractional-Order Model; Existence Theory; Stability Analysis. -
Abstract
Oncolytic virotherapy (OV) uses viruses to selectively destroy cancer cells, but the role of natural killer (NK) cells in this process remains unclear. This study develops a discrete fractional-order model to examine NK cell activity and identify activation conditions. Existence of the model solution is established via fixed-point theorems, and the basic reproduction number (R_0) is derived using the next-generation matrix method with sensitivity analysis to determine key parameters. Stability of equilibria is analyzed, and numerical simulations reveal how NK cell activation affects interactions among cancer cells, infected cells, and viruses. Additionally, an artificial neural network (ANN) trained with the Levenberg-Marquardt algorithm efficiently approximates the model's dynamics, showing high accuracy (low MSE) and providing a rapid, reliable tool for predicting complex biological behaviors.
-
References
- O. W. Abdulwahhab and N. H. Abbas. A new method to tune a fractional-order pid controller for a twin rotor aerodynamic system. Arabian Journal for Science and Engineering, 42:5179-5189, 2017. https://doi.org/10.1007/s13369-017-2629-5
- A. Al-Khedhairi, A. A. Elsadany, and A. Elsonbaty. On the dynamics of a discrete fractional-order cournot-bertrand competition duopoly game. Mathematical Problems in Engineering, page Article ID 8249215, 2022. https://doi.org/10.1155/2022/8249215.
- S. M. Al-Tuwairqi, N. O. Al-Johani, and E. A. Simbawa. Modeling dynamics of cancer virotherapy with immune
- response. Advances in Difference Equations, 2020:438, 2020.
- Z. Ali. Theoretical and Computational Study of Fractional-order Mathematical Models for Infectious Diseases. PhD thesis, Monash University, 2023.
- Z. Ali, S. N. Nia, F. Rabiei, K. Shah, and M. K. Tan. A semi-analytical approach for the solution of time-fractional navier-stokes equation. Advances in Mathematical Physics, page Article ID 5547804, 2021. 13 pages. https://doi.org/10.1155/2021/5547804.
- Z. Ali, F. Rabiei, K. Shah, and Z. A. Majid. Dynamics of sir mathematical model for covid-19 outbreak in pakistan under fractal-fractional derivative. Fractals, 29(5):2150120, 2021. https://doi.org/10.1142/S0218348X21501206.
- A. M. Alqahtani, S. Akram, J. Ahmad, K. A. Aldwoah, and M. ur Rahman. Stochastic wave solutions of fractional radhakrishnan-kundu-lakshmanan equation arising in optical fibers with their sensitivity analysis. Journal of Optics, 2024. https://doi.org/10.1007/s12596-024-01850-w.
- J. Altomonte, L. Wu, M. Meseck, L. Chen, O. Ebert, A. Garcia-Sastre, J. Fallon, J. Mandeli, and S. L. Woo. Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of nk and nkt cells. Cancer Gene Therapy, 16:266-278, 2009. https://doi.org/10.1038/cgt.2008.74.
- C. A. Alvarez-Breckenridge et al. Nk cells impede glioblastoma virotherapy through nkp30 and nkp46 natural cytotoxicity receptors. Nature Medicine, 18:1827-1834, 2012. https://doi.org/10.1038/nm.3013
- S. C-Vázquez et al. Applications of fractional operators in robotics: A review. Journal of Intelligent and Robotic Systems, 104:63, 2022. https://doi.org/10.1007/s10846-022-01597-1.
- N. H. Can, H. Jafari, and M. N. Ncube. Fractional calculus in data fitting. Alexandria Engineering Journal, 59(5):3269-3274, 2020. https://doi.org/10.1016/j.aej.2020.09.002.
- C. Coll, A. Herrero, D. Ginestar, and E. Sánchez. The discrete fractional order difference applied to an epidemicmodel with indirect transmission. Applied Mathematical Modelling, 103:636-648, 2022. https://doi.org/10.1007/s10846-022-01597-1.
- M. F. Danca. Fractional order logistic map: Numerical approach. Chaos, Solitons and Fractals, 157:111851, 2022. https://doi.org/10.1016/j.chaos.2022.111851.
- S. Das. Application of generalized fractional calculus in electrical circuit analysis and electromagnetics. In Functional Fractional Calculus. Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-20545-3_8.
- E. C. de Oliveira and J. A. T. Machado. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering, 2014:238459, 2014. 6 pages. https://doi.org/10.1155/2014/238459.
- A. Desjardins et al. Recurrent glioblastoma treated with recombinant poliovirus. New England Journal of Medicine, 379:150-161, 2018. https://doi.org/10.1056/NEJMoa1716435
- N. Djenina, A. Ouannas, I. M. Batiha, G. Grassi, T.-E. Oussaeif, and S. Momani. A novel fractional-order discrete sir model for predicting covid-19 behavior. Mathematics, 10(13):2224, 2022. https://doi.org/10.3390/math10132224
- A. Elsonbaty and A. A. Elsadany. On discrete fractional-order lotka-volterra model based on the caputo difference discrete operator. Mathematical Sciences, 17(1):67-79, 2023. https://doi.org/10.1007/s40096-021-00442-0
- P. F. Ferrucci, L. Pala, F. Conforti, and E. Cocorocchio. Talimogene laherparepvec (t-vec): An intralesional cancer immunotherapy for advanced melanoma. Cancers, 13:1383, 2021. https://doi.org/10.3390/cancers13061383.
- B. Gesundheit et al. Effective treatment of glioblastoma multiforme with oncolytic virotherapy: A case-series. Frontiers in Oncology, 10:702, 2020. https://doi.org/10.3389/fonc.2020.00702
- J. Han, C. A. Alvarez-Breckenridge, Q. E. Wang, and J. Yu. Tgf-beta signaling and its targeting for glioma treatment. American Journal of Cancer Research, 5:945-955, 2015.
- R. Hilfer. Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. https://doi.org/10.1142/3779.
- L.-L. Huang, J. H. Park, G.-C. Wu, and Z.-W. Mo. Variable-order fractional discrete-time recurrent neural networks. Journal of Computational and Applied Mathematics, 370:112633, 2020. https://doi.org/10.1016/j.cam.2019.112633.
- Y. Jiang et al. Fractional-order autonomous circuits with order larger than one. Journal of Advanced Research, 25:217-225, 2020. https://doi.org/10.1016/j.jare.2020.05.005.
- D. Kim, D.-H. Shin, and C. K. Sung. The optimal balance between oncolytic viruses and natural killer cells: A mathematical approach. Mathematics, 10:3370, 2022. https://doi.org/10.3390/math10183370.
- Y. Kim, J. Y. Yoo, T. J. Lee, J. Liu, J. Yu, M. A. Caligiuri, B. Kaur, and A. Friedman. Complex role of nk cells in regulation of oncolytic virus-bortezomib therapy. Proceedings of the National Academy of Sciences of the USA, 115:4927-4932, 2018. https://doi.org/10.1073/pnas.1715295115
- E. Y. L. Leung et al. Nk cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Molecular Therapy Oncolytics, 16:289-301, 2020. https://doi.org/10.1016/j.omto.2020.02.001.
- X. Li, P. Wang, H. Li, X. Du, M. Liu, Q. Huang, Y. Wang, and S. Wang. The efficacy of oncolytic adenovirus is mediated by t -cell responses against virus and tumor in syrian hamster model. Clinical Cancer Research, 23:239-249, 2017. https://doi.org/10.1158/1078-0432.CCR-16-0477
- Y. A. Madani, Z. Ali, M. Rabih, A. Alsulami, N. H. E. Eljaneid, K. Aldwoah, and B. Muflh. Discrete fractional-order modeling of recurrent childhood diseases using the caputo difference operator. Fractal and Fractional, 9(1):55, 2025. https://doi.org/10.3390/fractalfract9010055
- Y. A. Madani, M. N. A. Rabih, F. A. Alqarni, Z. Ali, K. A. Aldwoah, and M. Hleili. Existence, uniqueness, and stability of a nonlinear tripled fractional order differential system. Fractal and Fractional, 8(7):416, 2024. https://doi.org/10.3390/fractalfract8070416.
- R. L. Magin. Fractional calculus in bioengineering. Critical Reviews in Biomedical Engineering, 32(1):1-104, 2004. https://doi.org/10.1615/CritRevBiomedEng.v32.10.
- R. Matušu. Application of fractional order calculus to control theory. International Journal of Mathematical Models and Methods in Applied Sciences, 5(7):1162-1169, 2011.
- R. P. Meilanov and R. A. Magomedov. Thermodynamics in fractional calculus. Journal of Engineering Physics and Thermophysics, 87:1521-1531, 2014. https://doi.org/10.1007/s10891-014-1158-2.
- F. Meral, T. Royston, and R. Magin. Fractional calculus in viscoelasticity: an experimental study. Communications in Nonlinear Science and Numerical Simulation, 15:939-945, 2010. https://doi.org/10.1016/j.cnsns.2009.05.004.
- M. Mondal, J. Guo, P. He, and D. Zhou. Recent advances of oncolytic virus in cancer therapy. Human Vaccines ^6 Immunotherapeutics, 16:2389-2402, 2020. https://doi.org/10.1080/21645515.2020.1723363.
- K. Oldham. Fractional differential equations in electrochemistry. Advances in Engineering Software, 41:9-12, 2010. https://doi.org/10.1016/j.advengsoft.2008.12.012
- P. Ostalczyk. Discrete Fractional Calculus: Applications in Control and Image Processing, volume 4. World Scientific, 2015. https://doi.org/10.1142/9833.
- Y. Peng, S. He, and K. Sun. Chaos in the discrete memristor-based system with fractional-order difference. Results in Physics, 24:104106, 2021. https://doi.org/10.1016/j.rinp.2021.104106
- T. A. Phan and J. P. Tian. The role of the innate immune system in oncolytic virotherapy. Computational and Mathematical Methods in Medicine, 2017:6587258, 2017. https://doi.org/10.1155/2017/6587258.
- N. S. Senekal, K. J. Mahasa, A. Eladdadi, L. de Pillis, and R. Ouifki. Natural killer cells recruitment in oncolytic virotherapy: A mathematical model. Bulletin of Mathematical Biology, 83:75, 2021. https://doi.org/10.1007/s11538-021-00903-6
- N. A. Shah, D. Vieru, and C. Fetecau. Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. Journal of Magnetism and Magnetic Materials, 409:10-19, 2016. https://doi.org/10.1016/j.jmmm.2016.02.013.
- V. E. Tarasov. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer Science and Business Media, 2011. https://doi.org/10.1007/978-3-642-14003-7
- V. E. Tarasov and V. V. Tarasova. Long and short memory in economics: fractional-order difference and differentiation. arXiv preprint arXiv:1612.07903, 2016. https://doi.org/10.21013/jmss.v5.n2.p10
- S. H. Thorne, T. H. Hwang, et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, jx-963. Journal of Clinical Investigation, 117:3350-3358, 2007. https://doi.org/10.1172/JCI32727.
- O. W. Abdulwahhab and N. H. Abbas. A new method to tune a fractional-order pid controller for a twin rotor aerodynamic system. Arabian Journal for Science and Engineering, 42:5179-5189, 2017. https://doi.org/10.1007/s13369-017-2629-5
- A. Al-Khedhairi, A. A. Elsadany, and A. Elsonbaty. On the dynamics of a discrete fractional-order cournot-bertrand competition duopoly game. Mathematical Problems in Engineering, page Article ID 8249215, 2022. https://doi.org/10.1155/2022/8249215.
- S. M. Al-Tuwairqi, N. O. Al-Johani, and E. A. Simbawa. Modeling dynamics of cancer virotherapy with immune
- response. Advances in Difference Equations, 2020:438, 2020.
- Z. Ali. Theoretical and Computational Study of Fractional-order Mathematical Models for Infectious Diseases. PhD thesis, Monash University, 2023.
- Z. Ali, S. N. Nia, F. Rabiei, K. Shah, and M. K. Tan. A semi-analytical approach for the solution of time-fractional navier-stokes equation. Advances in Mathematical Physics, page Article ID 5547804, 2021. 13 pages. https://doi.org/10.1155/2021/5547804.
- Z. Ali, F. Rabiei, K. Shah, and Z. A. Majid. Dynamics of sir mathematical model for covid-19 outbreak in pakistan under fractal-fractional derivative. Fractals, 29(5):2150120, 2021. https://doi.org/10.1142/S0218348X21501206.
- A. M. Alqahtani, S. Akram, J. Ahmad, K. A. Aldwoah, and M. ur Rahman. Stochastic wave solutions of fractional radhakrishnan-kundu-lakshmanan equation arising in optical fibers with their sensitivity analysis. Journal of Optics, 2024. https://doi.org/10.1007/s12596-024-01850-w.
- J. Altomonte, L. Wu, M. Meseck, L. Chen, O. Ebert, A. Garcia-Sastre, J. Fallon, J. Mandeli, and S. L. Woo. Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of nk and nkt cells. Cancer Gene Therapy, 16:266-278, 2009. https://doi.org/10.1038/cgt.2008.74.
- C. A. Alvarez-Breckenridge et al. Nk cells impede glioblastoma virotherapy through nkp30 and nkp46 natural cytotoxicity receptors. Nature Medicine, 18:1827-1834, 2012. https://doi.org/10.1038/nm.3013
- S. C-Vázquez et al. Applications of fractional operators in robotics: A review. Journal of Intelligent and Robotic Systems, 104:63, 2022. https://doi.org/10.1007/s10846-022-01597-1.
- N. H. Can, H. Jafari, and M. N. Ncube. Fractional calculus in data fitting. Alexandria Engineering Journal, 59(5):3269-3274, 2020. https://doi.org/10.1016/j.aej.2020.09.002.
- C. Coll, A. Herrero, D. Ginestar, and E. Sánchez. The discrete fractional order difference applied to an epidemicmodel with indirect transmission. Applied Mathematical Modelling, 103:636-648, 2022. https://doi.org/10.1007/s10846-022-01597-1.
- M. F. Danca. Fractional order logistic map: Numerical approach. Chaos, Solitons and Fractals, 157:111851, 2022. https://doi.org/10.1016/j.chaos.2022.111851.
- S. Das. Application of generalized fractional calculus in electrical circuit analysis and electromagnetics. In Functional Fractional Calculus. Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-20545-3_8.
- E. C. de Oliveira and J. A. T. Machado. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering, 2014:238459, 2014. 6 pages. https://doi.org/10.1155/2014/238459.
- A. Desjardins et al. Recurrent glioblastoma treated with recombinant poliovirus. New England Journal of Medicine, 379:150-161, 2018. https://doi.org/10.1056/NEJMoa1716435
- N. Djenina, A. Ouannas, I. M. Batiha, G. Grassi, T.-E. Oussaeif, and S. Momani. A novel fractional-order discrete sir model for predicting covid-19 behavior. Mathematics, 10(13):2224, 2022. https://doi.org/10.3390/math10132224
- A. Elsonbaty and A. A. Elsadany. On discrete fractional-order lotka-volterra model based on the caputo difference discrete operator. Mathematical Sciences, 17(1):67-79, 2023. https://doi.org/10.1007/s40096-021-00442-0
- P. F. Ferrucci, L. Pala, F. Conforti, and E. Cocorocchio. Talimogene laherparepvec (t-vec): An intralesional cancer immunotherapy for advanced melanoma. Cancers, 13:1383, 2021. https://doi.org/10.3390/cancers13061383.
- B. Gesundheit et al. Effective treatment of glioblastoma multiforme with oncolytic virotherapy: A case-series. Frontiers in Oncology, 10:702, 2020. https://doi.org/10.3389/fonc.2020.00702
- J. Han, C. A. Alvarez-Breckenridge, Q. E. Wang, and J. Yu. Tgf-beta signaling and its targeting for glioma treatment. American Journal of Cancer Research, 5:945-955, 2015.
- R. Hilfer. Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. https://doi.org/10.1142/3779.
- L.-L. Huang, J. H. Park, G.-C. Wu, and Z.-W. Mo. Variable-order fractional discrete-time recurrent neural networks. Journal of Computational and Applied Mathematics, 370:112633, 2020. https://doi.org/10.1016/j.cam.2019.112633.
- Y. Jiang et al. Fractional-order autonomous circuits with order larger than one. Journal of Advanced Research, 25:217-225, 2020. https://doi.org/10.1016/j.jare.2020.05.005.
- D. Kim, D.-H. Shin, and C. K. Sung. The optimal balance between oncolytic viruses and natural killer cells: A mathematical approach. Mathematics, 10:3370, 2022. https://doi.org/10.3390/math10183370.
- Y. Kim, J. Y. Yoo, T. J. Lee, J. Liu, J. Yu, M. A. Caligiuri, B. Kaur, and A. Friedman. Complex role of nk cells in regulation of oncolytic virus-bortezomib therapy. Proceedings of the National Academy of Sciences of the USA, 115:4927-4932, 2018. https://doi.org/10.1073/pnas.1715295115
- E. Y. L. Leung et al. Nk cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Molecular Therapy Oncolytics, 16:289-301, 2020. https://doi.org/10.1016/j.omto.2020.02.001.
- X. Li, P. Wang, H. Li, X. Du, M. Liu, Q. Huang, Y. Wang, and S. Wang. The efficacy of oncolytic adenovirus is mediated by t -cell responses against virus and tumor in syrian hamster model. Clinical Cancer Research, 23:239-249, 2017. https://doi.org/10.1158/1078-0432.CCR-16-0477
- Y. A. Madani, Z. Ali, M. Rabih, A. Alsulami, N. H. E. Eljaneid, K. Aldwoah, and B. Muflh. Discrete fractional-order modeling of recurrent childhood diseases using the caputo difference operator. Fractal and Fractional, 9(1):55, 2025. https://doi.org/10.3390/fractalfract9010055
- Y. A. Madani, M. N. A. Rabih, F. A. Alqarni, Z. Ali, K. A. Aldwoah, and M. Hleili. Existence, uniqueness, and stability of a nonlinear tripled fractional order differential system. Fractal and Fractional, 8(7):416, 2024. https://doi.org/10.3390/fractalfract8070416.
- R. L. Magin. Fractional calculus in bioengineering. Critical Reviews in Biomedical Engineering, 32(1):1-104, 2004. https://doi.org/10.1615/CritRevBiomedEng.v32.10.
- R. Matušu. Application of fractional order calculus to control theory. International Journal of Mathematical Models and Methods in Applied Sciences, 5(7):1162-1169, 2011.
- R. P. Meilanov and R. A. Magomedov. Thermodynamics in fractional calculus. Journal of Engineering Physics and Thermophysics, 87:1521-1531, 2014. https://doi.org/10.1007/s10891-014-1158-2.
- F. Meral, T. Royston, and R. Magin. Fractional calculus in viscoelasticity: an experimental study. Communications in Nonlinear Science and Numerical Simulation, 15:939-945, 2010. https://doi.org/10.1016/j.cnsns.2009.05.004.
- M. Mondal, J. Guo, P. He, and D. Zhou. Recent advances of oncolytic virus in cancer therapy. Human Vaccines ^6 Immunotherapeutics, 16:2389-2402, 2020. https://doi.org/10.1080/21645515.2020.1723363.
- K. Oldham. Fractional differential equations in electrochemistry. Advances in Engineering Software, 41:9-12, 2010. https://doi.org/10.1016/j.advengsoft.2008.12.012
- P. Ostalczyk. Discrete Fractional Calculus: Applications in Control and Image Processing, volume 4. World Scientific, 2015. https://doi.org/10.1142/9833.
- Y. Peng, S. He, and K. Sun. Chaos in the discrete memristor-based system with fractional-order difference. Results in Physics, 24:104106, 2021. https://doi.org/10.1016/j.rinp.2021.104106
- T. A. Phan and J. P. Tian. The role of the innate immune system in oncolytic virotherapy. Computational and Mathematical Methods in Medicine, 2017:6587258, 2017. https://doi.org/10.1155/2017/6587258.
- N. S. Senekal, K. J. Mahasa, A. Eladdadi, L. de Pillis, and R. Ouifki. Natural killer cells recruitment in oncolytic virotherapy: A mathematical model. Bulletin of Mathematical Biology, 83:75, 2021. https://doi.org/10.1007/s11538-021-00903-6
- N. A. Shah, D. Vieru, and C. Fetecau. Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. Journal of Magnetism and Magnetic Materials, 409:10-19, 2016. https://doi.org/10.1016/j.jmmm.2016.02.013.
- V. E. Tarasov. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer Science and Business Media, 2011. https://doi.org/10.1007/978-3-642-14003-7
- V. E. Tarasov and V. V. Tarasova. Long and short memory in economics: fractional-order difference and differentiation. arXiv preprint arXiv:1612.07903, 2016. https://doi.org/10.21013/jmss.v5.n2.p10
- S. H. Thorne, T. H. Hwang, et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, jx-963. Journal of Clinical Investigation, 117:3350-3358, 2007. https://doi.org/10.1172/JCI32727.
-
Downloads
-
How to Cite
Sharmila, M., & Indrakala, S. (2025). Fractional-Order Modeling and Neural Network Simulation of NK Cell-Oncolytic Virus Interactions. International Journal of Basic and Applied Sciences, 14(8), 106-120. https://doi.org/10.14419/9pjcye33
