Evolution and Innovations of Occluder Devices: A Review of Traditional and Cutting-Edge Technologies
-
https://doi.org/10.14419/4wm99607
Received date: September 13, 2025
Accepted date: October 29, 2025
Published date: January 24, 2026
-
Biodegradable Occluder; Congenital Heart Defects; Occluder Devices; Structural Heart Disease -
Abstract
Congenital heart defects and structural cardiac abnormalities including atrial septal defect (ASD), Patent Foramen Ovale (PFO), Ventricular Septal Defect (VSD), Patent Ductus Arteriosus (PDA), and left atrial appendage anomalies represent a significant global health burden, often requiring timely diagnosis and intervention to prevent long-term morbidity and mortality. The development of transcatheter occlusion devices has transformed the treatment of many disorders, providing less invasive, safer, and more effective alternatives to traditional surgical procedures. This review delves into the historical progression and recent technological advancements in occluder device design, materials, and deployment methods. It demonstrates the transition from early metal-based devices, such as nitinol frameworks, to next-generation biodegradable occluders made of polylactide, polydioxanone, and polycaprolactone. These materials have excellent biocompatibility, facilitate tissue integration, and prevent the long-term difficulties associated with permanent implants. Innovations such as 3D/4D printing, shape-memory polymers, and hybrid devices are pushing the development of safer and more patient-specific solutions. Despite positive preclinical and clinical results, there are still hurdles in optimizing degradation rates, mechanical strength, and long-term effects. This study gives a thorough assessment of current and emerging occlusion technologies, focusing on their potential to improve procedural success, patient safety, and the future landscape of structural heart disease treatment.
-
References
- Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002 Jun 19;39(12):1890-900. https://doi.org/10.1016/S0735-1097(02)01886-7.
- Vizzari G, Pizzino F, Zwicke D, Tajik AJ, Carerj S, Di Bella G, Micari A, Khandheria BK, Zito C. Patent foramen ovale: anatomical complexity and long-tunnel morphology related issues. Am J Cardiovasc Dis. 2021 Jun 15;11(3):316-329. PMID: 34322302; PMCID: PMC8303044.
- Zimmermann, W. J., Heinisch, C., Majunke, N., Staubach, S., Russell, S., Wunderlich, N., & Sievert, H. (2010). Patent Foramen Ovale Closure with the SeptRx Device. JACC: Cardiovascular Interventions, 3(9), 963–967. https://doi.org/10.1016/j.jcin.2010.04.019.
- HAGEN, P. T., SCHOLZ, D. G., & EDWARDS, W. D. (1984). Incidence and Size of Patent Foramen Ovale During the First 10 Decades of Life: An Autopsy Study of 965 Normal Hearts. Mayo Clinic Proceedings, 59(1), 17–20. https://doi.org/10.1016/S0025-6196(12)60336-X.
- Wahl, A., Tai, T., Praz, F., Schwerzmann, M., Seiler, C., Nedeltchev, K., Meier, B. (2009). Late Results after Percutaneous Closure of Patent Fora-men Ovale for Secondary Prevention of Paradoxical Embolism Using the Amplatzer PFO Occluder without Intraprocedural Echocardiography. JACC: Cardiovascular Interventions, 2(2), 116–123. https://doi.org/10.1016/j.jcin.2008.09.013.
- Saver, J. L., Carroll, J. D., Thaler, D. E., Smalling, R. W., MacDonald, L. A., Marks, D. S., & Tirschwell, D. L. (2017). Long-Term Outcomes of Patent Foramen Ovale Closure or Medical Therapy after Stroke. New England Journal of Medicine, 377(11), 1022–1032. https://doi.org/10.1056/NEJMoa1610057.
- Zhao, L.-J., Han, B., Zhang, J.-J., Yi, Y.-C., Jiang, D.-D., & Lyu, J.-L. (2017). Transcatheter closure of congenital perimembranous ventricular sep-tal defect using the Amplatzer duct occluder 2. Cardiology in the Young, 28(03), 447–453. https://doi.org/10.1017/S1047951117002396.
- Spies, C., Cao, Q.-L., & Hijazi, Z. M. (2010). Transcatheter closure of congenital and acquired septal defects. European Heart Journal Supplements, 12(Suppl E), E24–E34. https://doi.org/10.1093/eurheartj/suq006.
- Ghosh, S., Sridhar, A., & Sivaprakasam, M. (2017). Complete heart block following transcatheter closure of perimembranous VSD using amplatzer duct occluder II. Catheterization and Cardiovascular Interventions. https://doi.org/10.1002/ccd.27177.
- Mandal KD, Su D, Pang Y. Long-Term Outcome of Transcatheter Device Closure of Perimembranous Ventricular Septal Defects. Front Pediatr. 2018 May 3;6:128.. PMID: 29774208; PMCID: PMC5943568. https://doi.org/10.3389/fped.2018.00128.
- Mijangos-Vázquez R, El-Sisi A, Sandoval Jones JP, García-Montes JA, Hernández-Reyes R, Sobhy R, Abdelmassih A, Soliman MM, Ali S, Moli-na-Sánchez T, Zabal C. Transcatheter Closure of Perimembranous Ventricular Septal Defects Using Different Generations of Amplatzer Devices: Multicenter Experience. J Interv Cardiol. 2020 Feb 21;2020:8948249.. PMID: 32161516; PMCID: PMC7054803. https://doi.org/10.1155/2020/8948249.
- Shrestha M, Promphan W, Layangool T, Roymanee S, Wongwaitaweewong K, Prachasilchai P, Kirawittaya T, Sangtawesin C, Pattarakunwiwat P. Feasibility and 1-year outcome of transcatheter closure of perimembranous ventricular septal defects with different devices. Catheter Cardiovasc Interv. 2019 Jan 1;93(1):E30-E37. Epub 2018 Sep 30. PMID: 30269417. https://doi.org/10.1002/ccd.27851.
- Kanaan, M., Ewert, P., Berger, F. et al. Follow-Up of Patients with Interventional Closure of Ventricular Septal Defects with Amplatzer Duct Oc-cluder II. Pediatr Cardiol 36, 379–385 (2015). https://doi.org/10.1007/s00246-014-1017-0.
- Celiker, A., Aypar, E., Karagöz, T., Dilber, E., & Ceviz, N. (2005). Transcatheter closure of patent ductus arteriosus with Nit-Occlud coils. Cathe-terization and Cardiovascular Interventions, 65(4), 569–576. https://doi.org/10.1002/ccd.20423.
- Moore, J. W., Greene, J., Palomares, S., Javois, A., Owada, C. Y., Cheatham, J. P., Levi, D. S. (2014). Results of the Combined U.S. Multicenter Pivotal Study and the Continuing Access Study of the Nit-Occlud PDA Device for Percutaneous Closure of Patent Ductus Arteriosus. JACC: Cardiovascular Interventions, 7(12), 1430–1436. https://doi.org/10.1016/j.jcin.2014.06.019.
- Caliskan, E., Cox, J., Holmes, D. et al. Interventional and surgical occlusion of the left atrial appendage. Nat Rev Cardiol 14, 727–743 (2017). https://doi.org/10.1038/nrcardio.2017.107.
- Robinson, S.S., Alaie, S., Sidoti, H. et al. Patient-specific design of a soft occluder for the left atrial appendage. Nat Biomed Eng 2, 8–16 (2018). https://doi.org/10.1038/s41551-017-0180-z.
- Romero, J., Natale, A., Engstrom, K., & Di Biase, L. (2016). Left atrial appendage isolation using percutaneous (endocardial/epicardial) devices: Pre-clinical and clinical experience. Trends in Cardiovasmcular Medicine, 26(2), 182–199. https://doi.org/10.1016/j.tcm.2015.05.009.
- Reddy, V. Y., Sievert, H., Halperin, J., Doshi, S. K., Buchbinder, M., Neuzil, P., … Holmes, D. (2014). Percutaneous Left Atrial Appendage Clo-sure vs Warfarin for Atrial Fibrillation. JAMA, 312(19), 1988. https://doi.org/10.1001/jama.2014.15192.
- Tzikas, A., et al. (2016). "Left atrial appendage occlusion for stroke prevention in atrial fibrillation: multicentre experience with the AMPLATZE5R Cardiac Plug." EuroIntervention 11(10): 1170-1179. https://doi.org/10.4244/EIJY15M01_06.
- Hsiao HM, Wang YP, Ko CY, Cheng YH, Lee HY. A Novel Nitinol Spherical Occlusion Device for Liver Cancer. Materials (Basel). 2016 Jan 2;9(1):19. PMID: 28787820; PMCID: PMC5456572. https://doi.org/10.3390/ma9010019.
- Li YF, Chen ZW, Xie ZF, Wang SS, Xie YM, Zhang ZW. Recent Development of Biodegradable Occlusion Devices for Intra-Atrial Shunts. Rev Cardiovasc Med. 2024 May 8;25(5):159. PMID: 39076475; PMCID: PMC11267192. https://doi.org/10.31083/j.rcm2505159.
- Sun, Y., Xia, Y., Zhang, X., Li, W., & Xing, Q. (2020). An innovative occluder for cardiac defect: 3D printing and a biocompatibility research based on self‐developed bioabsorbable material—LA–GA–TMC. Journal of Biomedical Materials Research Part B: Applied Biomaterials. https://doi.org/10.1002/jbm.b.34550.
- Lu, W., Ouyang, W., Wang, S., Liu, Y., Zhang, F., Wang, W., & Pan, X. (2018). A novel totally biodegradable device for effective atrial septal defect closure: A 2-year study in sheep. Journal of Interventional Cardiology. https://doi.org/10.1111/joic.12550.
- Li, Y., Xie, Y., Chen, J., Li, B., Xie, Z., Wang, S., & Zhang, Z. (2019). Initial experiences with a novel biodegradable device for percutaneous clo-sure of atrial septal defects: From preclinical study to first‐in‐human experience. Catheterization and Cardiovascular Interventions. https://doi.org/10.1002/ccd.28529.
- Sigler, M., & Jux, C. (2007). Biocompatibility of septal defect closure devices. Heart, 93(4), 444–449. https://doi.org/10.1136/hrt.2006.098103.
- Minocha, P. K., Kothwala, D., Shah, K., Machhi, D., Sharma, R., & Patel, K. (2025). Evaluation of safety and effectiveness of the Floret™ PDA oc-cluder for transcatheter closure of patent ductus arteriosus in pediatric patients. International Journal for Research in Applied Science & Engineering Technology (IJRASET). https://doi.org/10.22214/ijraset.2025.72793
- Liu, SJ., Peng, KM., Hsiao, CY. et al. Novel Biodegradable Polycaprolactone Occlusion Device Combining Nanofibrous PLGA/Collagen Mem-brane for Closure of Atrial Septal Defect (ASD). Ann Biomed Eng 39, 2759–2766 (2011). https://doi.org/10.1007/s10439-011-0368-4.
- Jux, C., Bertram, H., Wohlsein, P., Bruegmann, M., & Paul, T. (2006). Interventional Atrial Septal Defect Closure Using a Totally Bioresorbable Occluder Matrix. Journal of the American College of Cardiology, 48(1), 161–169. https://doi.org/10.1016/j.jacc.2006.02.057.
- Xu, Q., Fa, H., Yang, P., Wang, Q., & Xing, Q. (2024). Progress of biodegradable polymer application in cardiac occluders. Journal of biomedical materials research. Part B, Applied biomate rials, 112(1), e35351. https://doi.org/10.1002/jbm.b.35351.
- Sigler M, Söderberg B, Schmitt B, Mellmann A, Bernhard J. Carag bioresorbable septal occluder (CBSO): histopathology of experimental implants. EuroIntervention. 2018 Feb 20;13(14):1655-1661. PMID: 28555594. https://doi.org/10.4244/EIJ-D-17-00006.
- Pavcnik D, Tekulve K, Uchida BT, Luo ZH, Jeromel M, Van Alstine WG, Keller FS, Rösch J. Double BioDisk: a new bioprosthetic device for transcatheter closure of atrial septal defects - a feasibility study in adult sheep. Radiol Oncol. 2012 Jun;46(2):89-96. Epub 2012 May 30. PMID: 23077444; PMCID: PMC3472939. https://doi.org/10.2478/v10019-012-0029-8.
- Zhang, Z., Xiong, Y., Hu, J., Guo, X., Xu, X., Chen, J., Wang, Y., & Chen, Y. (2022). A Finite Element Investigation on Material and Design Pa-rameters of Ventricular Septal Defect Occluder Devices. Journal of Functional Biomaterials, 13(4), 182. https://doi.org/10.3390/jfb13040182.
- Li, Z., Kong, P., Liu, X., Feng, S., Ouyang, W., Wang, S., Hu, X., Xie, Y., Zhang, F., Zhang, Y., Gao, R., Wang, W., & Pan, X. (2022). A fully biodegradable polydioxanone occluder for ventricle septal defect closure. Bioactive materials, 24, 252–262. https://doi.org/10.1016/j.bioactmat.2022.12.018.
- Wu, Y., Gao, X., Wu, J., Zhou, T., Nguyen, T. T., & Wang, Y. (2023). Biodegradable Polylactic Acid and Its Composites: Characteristics, Pro-cessing, and Sustainable Applications in Sports. Polymers, 15(14), 3096. https://doi.org/10.3390/polym15143096.
- Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346. https://doi.org/10.1016/S0142-9612(00)00101-0.
- Bergström, J.S., Hayman, D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Ann Biomed Eng 44, 330–340 (2016). https://doi.org/10.1007/s10439-015-1455-8.
- Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153–162. https://doi.org/10.1016/j.addr.2016.03.012.
- Zhao, W., Zhang, F., Leng, J., & Liu, Y. (2019). Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Composites Science and Technology, 107866. https://doi.org/10.1016/j.compscitech.2019.107866.
- Zhang, F., Wang, L., Zheng, Z., Liu, Y., & Leng, J. (2019). Magnetic programming of 4D printed shape memory composite structures. Composites Part A: Applied Science and Manufacturing, 125, 105571. https://doi.org/10.1016/j.compositesa.2019.105571.
- Da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A. Biocompatibility, biodegradation and excretion of polylac-tic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal. 2018 May 15;340:9-14. https://doi.org/10.1016/j.cej.2018.01.010.
- Wang C, Zhang P. Design and characterization of PDO biodegradable intravascular stents. Textile Research Journal. 2017;87(16):1968-1976. https://doi.org/10.1177/0040517516660893.
- Goonoo, N., Jeetah, R., Bhaw-Luximon, A., & Jhurry, D. (2015). Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. European Journal of Pharmaceutics and Biopharmaceutics, 97, 371–391. https://doi.org/10.1016/j.ejpb.2015.05.024.
- Huang, X., Zhu, Y., Cao, J., Hu, J., Bai, Y., Jiang, H., … Qin, Y. (2012). Development and preclinical evaluation of a biodegradable ventricular septal defect occluder. Catheterization and Cardiovascular Interventions, 81(2), 324–330. https://doi.org/10.1002/ccd.24580.
- Zhu X Hang Can H Y. Bai, IL Jung Che W Wang Qu Khan, Animal experimental study of the fully biodegradable atral septal defect (ASD) oc-cluder Biomed Biotechnol chinol. 2012 (2012) 1-10. https://doi.org/10.1155/2012/735989.
- Ramaraju, H., Verga, A. S., Steedley, B. J., Kowblansky, A. P., Green, G. E., & Hollister, S. J. (2025). Investigation of the biodegradation kinetics and associated mechanical properties of 3D-printed polycaprolactone during long-term preclinical testing. Biomaterials, 321, 123257. https://doi.org/10.1016/j.biomaterials.2025.123257.
- Ntrivala, M. A., & Pitsavas, A. (2025). Polycaprolactone (PCL): The biodegradable polyester shaping the future of materials—A review on synthe-sis, properties, biodegradation, applications, and future perspectives. European Polymer Journal, 200, 114033. https://doi.org/10.1016/j.eurpolymj.2025.114033.
- Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2017). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science, Polymer Edition, 29(7-9), 863–893. https://doi.org/10.1080/09205063.2017.1394711.
- Majunke, N., & Sievert, H. (2007). ASD/PFO devices: what is in the pipeline?. Journal of interventional cardiology, 20(6), 517–523. https://doi.org/10.1111/j.1540-8183.2007.00303.x.
- Saver, J. L., Carroll, J. D., Thaler, D. E., Smalling, R. W., MacDonald, L. A., Marks, D. S., Tirschwell, D. L., & RESPECT Investigators (2017). Long-Term Outcomes of Patent Foramen Ovale Closure or Medical Therapy after Stroke. The New England journal of medicine, 377(11), 1022–1032. https://doi.org/10.1056/NEJMoa1610057.
- Mijangos-Vázquez, R., García-Montes, A. J., Soto-López, E. M., Guarner-Lans, V., & Zabal, C. (2018). Atrial septal defect closure with the new Cardia Ultrasept II™ device with interposed Goretex patch: Mexican experience - has the perforation of Ivalon's membrane been solved?. Cardiol-ogy in the young, 28(5), 709–714. https://doi.org/10.1017/S1047951118000100.
- Thanopoulos, B. D., Biasco, L., Dardas, P., De Backer, O., Avraamides, P., Deleanou, D., Ninios, V., Mavrommatis, P. P., & Soendergaard, L. (2014). Catheter closure of atrial septal defects using the Cocoon septal occluder: preliminary results of a European multicenter study. International journal of cardiology, 177(2), 418–422. https://doi.org/10.1016/j.ijcard.2014.09.006.
- Heath, A., Alvensleben, I. V., Navarro, J., Echazú, G., Kozlik-Feldmann, R., & Freudenthal, F. (2019). Developing High Medical Technology, a Challenge for Developing Countries: The Percutaneous Closure of Atrial Septal Defects Using Nit-Occlud ASD-R: Early and Mid-term Results. World journal for pediatric & congenital heart surgery, 10(4), 433–439. https://doi.org/10.1177/2150135119845257.
- Bulut, M. O., Yucel, I. K., Kucuk, M., Balli, S., Basar, E. Z., & Celebi, A. (2016). Initial Experience with the Nit-Occlud ASD-R: Short-Term Re-sults. Pediatric cardiology, 37(7), 1258-1265. https://doi.org/10.1007/s00246-016-1426-3.
- Araszkiewicz, A., Sławek, S., Trojnarska, O., Lesiak, M., & Grygier, M. (2018). Interventional closure of patent foramen ovale with Nit-occlud® device in prevention of recurrent neurologic events-Long-term results. Catheterization and cardiovascular interventions : official journal of the Soci-ety for Cardiac Angiography & Interventions, 92(1), 159–164. https://doi.org/10.1002/ccd.27386.
- Steinberg, D. H., Bertog, S. C., Momberger, J., Franke, J., Hofmann, I., Renkhoff, K., Joy, S., Vaskelyte, L., & Sievert, H. (2015). Initial experi-ence with the novel patent foramen ovale occlusion device Nit-Occlud® in patients with stroke or transient ischemic attack. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 85(7), 1262–1267. https://doi.org/10.1002/ccd.25580.
- Astarcioglu, M. A., Kalcik, M., Sen, T., Aykan, A. C., Gokdeniz, T., Gursoy, O. M., Karakoyun, S., Kulahcioglu, S., Gunduz, S., Kilit, C., Oy-lumlu, M., & Amasyali, B. (2015). Ceraflex versus Amplatzer occluder for secundum atrial septal defect closure. Multicenter clinical experience. Herz, 40 Suppl 2, 146–150. https://doi.org/10.1007/s00059-014-4192-0
- Celiker, A., Aypar, E., Karagöz, T., Dilber, E., & Ceviz, N. (2005). Transcatheter closure of patent ductus arteriosus with Nit-Occlud coils. Cathe-terization and cardiovascular interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 65(4), 569–576. https://doi.org/10.1002/ccd.20423.
- Tanidir, I. C., Baspinar, O., Saygi, M., Kervancioglu, M., Guzeltas, A., & Odemis, E. (2020). Use of Lifetech™ Konar-MF, a device for both perimembranous and muscular ventricular septal defects: A multicentre study. International journal of cardiology, 310, 43–50. https://doi.org/10.1016/j.ijcard.2020.02.056.
- C.A. Esteves, L.A. Solarewicz, R. Cassar, J.R. Neves, V. Esteves, R. Arrieta, Occlusion of the perimembranous ventricular septal defect using CERA(R) devices, Catheter. Cardiovasc. Interv. 80 (2012) 182–187. https://doi.org/10.1002/ccd.24371.
- S.C. Apostolopoulou , A. Tsoutsinos , C. Laskari , M. Kiaffas , S. Rammos , Large single centre experience with the Cera TM and CeraFlex TM occluders for clo- sure of interatrial communications: usefulness of the flexible rotation feature, Cardiovasc. Interv. Ther. 33 (2018) 70–76 https://doi.org/10.1007/s12928-016-0440-y.
- Park, H., Song, J., Kim, E. S., Huh, J., & Kang, I. S. (2018). Early Experiences Using Cocoon Occluders for Closure of a Ventricular Septal Defect. Journal of Cardiovascular Imaging, 26(3), 165–174. https://doi.org/10.4250/jcvi.2018.26.e19.
- Seeger, J., Birkemeyer, R., Rottbauer, W., & Wöhrle, J. (2017). First experience with the Watchman FLX occluder for percutaneous left atrial ap-pendage closure. Cardiovascular revascularization medicine : including molecular interventions, 18(7), 512–516. https://doi.org/10.1016/j.carrev.2017.04.018.
- J. Saw , Editorial commentary: percutaneous left atrial appendage closure for stroke prevention, Trends Cardiovasc. Med. 26 (2016) 200–201. https://doi.org/10.1016/j.tcm.2015.06.006.
- Yu, C. M., Khattab, A. A., Bertog, S. C., Lee, A. P., Kwong, J. S., Sievert, H., & Meier, B. (2013). Mechanical antithrombotic intervention by LAA occlusion in atrial fibrillation. Nature reviews. Cardiology, 10(12), 707–722. https://doi.org/10.1038/nrcardio.2013.158.
- Romero, J., Natale, A., Engstrom, K., & Di Biase, L. (2016). Left atrial appendage isolation using percutaneous (endocardial/epicardial) devices: Pre-clinical and clinical experience. Trends in cardiovascular medicine, 26(2), 182–199. https://doi.org/10.1016/j.tcm.2015.05.009.
- D.H.F. Chow , Y. Wong , J. Park , Y. Lam , T. De Potter , J. Rodés-Cabau , L. As- marats , M. Sandri , E. Sideris , T. McCaw , R.J. Lee , H. Sie-vert , L. Søndergaard , O. De Backer , An overview of current and emerging devices for percutaneous left atrial appendage closure, Trends Cardio-vasc. Med. 29 (2019) 228–236. https://doi.org/10.1016/j.tcm.2018.08.008.
- Tang, X., Zhang, Z., Wang, F., Bai, Y., Xu, X., Huang, X., Zhao, X., Gong, S., & Qin, Y. (2017). Percutaneous Left Atrial Appendage Closure With LACBES® Occluder - A Preclinical Feasibility Study. Circulation journal : official journal of the Japanese Circulation Society, 82(1), 87–92. https://doi.org/10.1253/circj.CJ-17-0412.
- Lam, Y. Y., Yip, G. W., Yu, C. M., Chan, W. W., Cheng, B. C., Yan, B. P., Clugston, R., Yong, G., Gattorna, T., & Paul, V. (2012). Left atrial appendage closure with AMPLATZER cardiac plug for stroke prevention in atrial fibrillation: initial Asia-Pacific experience. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 79(5), 794–800. https://doi.org/10.1002/ccd.23136.
- A. Tzikas , S. Shakir , S. Gafoor , H. Omran , S. Berti , G. Santoro , J. Kefer , U. Landmesser , J.E. Nielsen-Kudsk , I. Cruz-Gonzalez , H. Sievert , T. Tichel- backer , P. Kanagaratnam , F. Nietlispach , A. Aminian , F. Kasch , X. Freixa , P. Danna , M. Rezzaghi , P. Vermeersch , F. Stock , M. Stolcova , M. Costa , R. Ibrahim , W. Schillinger , B. Meier , J.W. Park , Left atrial appendage oc- clusion for stroke prevention in atrial fibrillation: multicentre experi- ence with the AMPLATZER cardiac plug, EuroIntervention 11 (2016) 1170–1179. https://doi.org/10.4244/EIJY15M01_06.
- I. Cruz-Gonzalez , J.C. Rama-Merchan , J. Rodriguez-Collado , J. Martin-Moreiras , A . Diego-Nieto , A . Arribas-Jimenez , P.L. Sanchez-Fernandez , Left atrial ap- pendage closure devices for cardiovascular risk reduction in atrial fibrillation patients, Res. Rep. Clin. Cardiol. 6 (2015) 47. https://doi.org/10.2147/RRCC.S48337.
- X. Freixa , J.L.K. Chan , A. Tzikas , P. Garceau , A. Basmadjian , R. Ibrahim , The Amplatzer TM Cardiac Plug 2 for left atrial appendage occlu-sion: Novel features and first-in-man experience, EuroIntervention 8 (2013) 1094–1098. https://doi.org/10.4244/EIJV8I9A167.
- Sideris, E. B., Toumanides, S., Macuil, B., Gutierrez-Leonard, H., Poursanov, M., Sokolov, A., & Moulopoulos, S. D. (2002). Transcatheter patch correction of secundum atrial septal defects. The American journal of cardiology, 89(9), 1082–1086. https://doi.org/10.1016/S0002-9149(02)02280-4.
- Li, Y. F., Xie, Y. M., Chen, J., Li, B. N., Xie, Z. F., Wang, S. S., & Zhang, Z. W. (2020). Initial experiences with a novel biodegradable device for percutaneous closure of atrial septal defects: From preclinical study to first-in-human experience. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions, 95(2), 282–293. https://doi.org/10.1002/ccd.28529.
- Pavcnik, D., Tekulve, K., Uchida, B. T., Luo, Z. H., Jeromel, M., Van Alstine, W. G., Keller, F. S., & Rösch, J. (2012). Double BioDisk: a new bio-prosthetic device for transcatheter closure of atrial septal defects - a feasibility study in adult sheep. Radiology and oncology, 46(2), 89–96. https://doi.org/10.2478/v10019-012-0029-8.
- Sigler, M., Söderberg, B., Schmitt, B., Mellmann, A., & Bernhard, J. (2018). Carag bioresorbable septal occluder (CBSO): histopathology of exper-imental implants. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 13(14), 1655–1661. https://doi.org/10.4244/EIJ-D-17-00006.
- Duong-Hong, D., Tang, Y. D., Wu, W., Venkatraman, S. S., Boey, F., Lim, J., & Yip, J. (2010). Fully biodegradable septal defect occluder-a dou-ble umbrella design. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 76(5), 711–718. https://doi.org/10.1002/ccd.22735.
- C. Lin , J. Lv , Y. Li , F. Zhang , J. Li , Y. Liu , L. Liu , J. Leng , 4D-Printed biodegrad- able and remotely controllable shape memory occlusion devices, Adv. Funct. Mater. 0 (2019) 1906569 . https://doi.org/10.1002/adfm.201906569.
- Lin, C., Liu, L., Liu, Y., & Leng, J. (2021). 4D Printing of Bioinspired Absorbable Left Atrial Appendage Occluders: A Proof-of-Concept Study. ACS applied materials & interfaces, 13(11), 12668–12678. https://doi.org/10.1021/acsami.0c17192.
- Huang, Y., Wong, Y. S., Wu, J., Kong, J. F., Chan, J. N., Khanolkar, L., Rao, D. P., Boey, F. Y., & Venkatraman, S. S. (2014). The mechanical behavior and biocompatibility of polymer blends for Patent Ductus Arteriosus (PDA) occlusion device. Journal of the mechanical behavior of bio-medical materials, 36, 143–160. https://doi.org/10.1016/j.jmbbm.2014.04.012.
- Huang, Y. Y., Wong, Y. S., Chan, J. N., & Venkatraman, S. S. (2015). A fully biodegradable patent ductus arteriosus occlude. Journal of materials science. Materials in medicine, 26(2), 93. https://doi.org/10.1007/s10856-015-5422-6.
- Huang, X. M., Zhu, Y. F., Cao, J., Hu, J. Q., Bai, Y., Jiang, H. B., Li, Z. F., Chen, Y., Wang, W., & Qin, Y. W. (2013). Development and preclini-cal evaluation of a biodegradable ventricular septal defect occluder. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 81(2), 324–330. https://doi.org/10.1002/ccd.24580.
- B.N. Li, Y.M. Xie, Z.F. Xie, X.M. Chen, G. Zhang, D.Y. Zhang, X.D. Liu, Z.W. Zhang, Study of biodegradable occluder of atrial septal defect in a porcine model, Catheter. Cardiovasc. Interv. 93 (2019) E38–E45. https://doi.org/10.1002/ccd.27852.
- Xie, Z.-F., Wang, S.-S., Zhang, Z.-W., Zhuang, J., Liu, X.-D., Chen, X.-M., … Zhang, D. (2016). A Novel-Design Poly-L-Lactic Acid Biode-gradable Device for Closure of Atrial Septal Defect: Long-Term Results in Swine. Cardiology, 135(3), 179–187. https://doi.org/10.1159/000446313.
- G. Morgan, K. Lee, R. Chaturvedi, L. Benson, A biodegradable device (BioSTARTM) for atrial septal defect closure in children, Cathete. Cardio-vasc. Interv. 76 (2010) 241–245. https://doi.org/10.1002/ccd.22517.
- Meril Life Sciences. (2025). Floret™ VSD Occluder for Ventricular Septal Defect Closure.Available at: https://www.merillife.com/our-products/vascular-intervention/floret-vsd.
- S. Kazmouz, D. Kenny, Q. Cao, CJ. Kavinsky, ZM. Hijazi, Transcatheter closure of secundum atrial septal defects, J. Invasive Cardiol. 25 (2013) 257. [85] M. Chessa, M. Carminati, G. Butera, R.M. Bini, M. Drago, L. Rosti, A. Giamberti.
- Meril Life Sciences. (2025). Floret™ VSD Occluder for Ventricular Septal Defect Closure. Retrieved from Meril Life Sciences website: https://www.merillife.com.
- Zhang, X., Chen, S., Li, W., Jilaihawi, H., Piayda, K., Sievert, H., Zhou, D., Pan, W., & Ge, J. (2022). A Novel Puncturable Atrial Septal Defect Occluder: The Results of Preclinical Experiment and First-in-Human Study. JACC. Basic to translational science, 7(12), 1200–1210. https://doi.org/10.1016/j.jacbts.2022.06.010.
- Xu, Q., Fa, H., Yang, P., Wang, Q., & Xing, Q. (2024). Progress of biodegradable polymer application in cardiac occluders. Journal of biomedical materials research. Part B, Applied biomaterials, 112(1), e35351. https://doi.org/10.1002/jbm.b.35351
- Ntousi, O., Roumpi, M., Siogkas, P. K., Polyzos, D., Kakkos, I., Matsopoulos, G. K., & Fotiadis, D. I. (2025). Advances in Computational Model-ing of Scaffolds for Bone Tissue Engineering: A Narrative Review of the Current Approaches and Challenges. Biomechanics, 5(4), 76. https://doi.org/10.3390/biomechanics5040076.
- Meril Life Sciences. (2025). Floret™ ASD – Occluder for Atrial Septal Defect closure. Available at: https://www.merillife.com/our-products/vascular-intervention/floret-asd.
-
Downloads
-
How to Cite
Khan, T. I. ., Rajpurohit, S. ., Patil, R. ., Bajpayee, L. ., Patil , B. U. ., Kumar, V. ., Dubey, V. K. ., & Shetty , K. K. . (2026). Evolution and Innovations of Occluder Devices: A Review of Traditional and Cutting-Edge Technologies. International Journal of Basic and Applied Sciences, 15(1), 124-135. https://doi.org/10.14419/4wm99607
