Evolution and Innovations of Occluder Devices: A Review of Traditional and Cutting-Edge ‎Technologies

  • Authors

    • Tahir Ishrak Khan Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    • Siddheesh Rajpurohit Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    • Rohidas Patil Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    • Lalit Bajpayee Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    • Bhavesh Uttam Patil Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    • Vaishak Kumar Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    • Vivek Krishnanand Dubey Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    • Kiran Kumar Shetty Department of Product Performance Engineering and Post Market Clinical Follow-up, Meril Life Sciences, Vapi, Gujarat, India -396191
    https://doi.org/10.14419/4wm99607

    Received date: September 13, 2025

    Accepted date: October 29, 2025

    Published date: January 24, 2026

  • Biodegradable Occluder; Congenital Heart Defects; Occluder Devices; Structural Heart Disease
  • Abstract

    Congenital heart defects and structural cardiac abnormalities including atrial septal defect ‎‎(ASD), Patent Foramen Ovale (PFO), Ventricular Septal Defect (VSD), Patent Ductus ‎Arteriosus (PDA), and left atrial appendage anomalies represent a significant global health ‎burden, often requiring timely diagnosis and intervention to prevent long-term morbidity and ‎mortality. The development of transcatheter occlusion devices has transformed the treatment of ‎many disorders, providing less invasive, safer, and more effective alternatives to traditional ‎surgical procedures. This review delves into the historical progression and recent technological ‎advancements in occluder device design, materials, and deployment methods. It demonstrates ‎the transition from early metal-based devices, such as nitinol frameworks, to next-generation ‎biodegradable occluders made of polylactide, polydioxanone, and polycaprolactone. These ‎materials have excellent biocompatibility, facilitate tissue integration, and prevent the long-term ‎difficulties associated with permanent implants. Innovations such as 3D/4D printing, shape-‎memory polymers, and hybrid devices are pushing the development of safer and more patient-‎specific solutions. Despite positive preclinical and clinical results, there are still hurdles in ‎optimizing degradation rates, mechanical strength, and long-term effects. This study gives a ‎thorough assessment of current and emerging occlusion technologies, focusing on their potential ‎to improve procedural success, patient safety, and the future landscape of structural heart disease ‎treatment‎.

  • References

    1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002 Jun 19;39(12):1890-900. https://doi.org/10.1016/S0735-1097(02)01886-7.
    2. Vizzari G, Pizzino F, Zwicke D, Tajik AJ, Carerj S, Di Bella G, Micari A, Khandheria BK, Zito C. Patent foramen ovale: anatomical complexity and long-tunnel morphology related issues. Am J Cardiovasc Dis. 2021 Jun 15;11(3):316-329. PMID: 34322302; PMCID: PMC8303044.
    3. Zimmermann, W. J., Heinisch, C., Majunke, N., Staubach, S., Russell, S., Wunderlich, N., & Sievert, H. (2010). Patent Foramen Ovale Closure with the SeptRx Device. JACC: Cardiovascular Interventions, 3(9), 963–967. https://doi.org/10.1016/j.jcin.2010.04.019.
    4. HAGEN, P. T., SCHOLZ, D. G., & EDWARDS, W. D. (1984). Incidence and Size of Patent Foramen Ovale During the First 10 Decades of Life: An Autopsy Study of 965 Normal Hearts. Mayo Clinic Proceedings, 59(1), 17–20. https://doi.org/10.1016/S0025-6196(12)60336-X.
    5. Wahl, A., Tai, T., Praz, F., Schwerzmann, M., Seiler, C., Nedeltchev, K., Meier, B. (2009). Late Results after Percutaneous Closure of Patent Fora-men Ovale for Secondary Prevention of Paradoxical Embolism Using the Amplatzer PFO Occluder without Intraprocedural Echocardiography. JACC: Cardiovascular Interventions, 2(2), 116–123. https://doi.org/10.1016/j.jcin.2008.09.013.
    6. Saver, J. L., Carroll, J. D., Thaler, D. E., Smalling, R. W., MacDonald, L. A., Marks, D. S., & Tirschwell, D. L. (2017). Long-Term Outcomes of Patent Foramen Ovale Closure or Medical Therapy after Stroke. New England Journal of Medicine, 377(11), 1022–1032. https://doi.org/10.1056/NEJMoa1610057.
    7. Zhao, L.-J., Han, B., Zhang, J.-J., Yi, Y.-C., Jiang, D.-D., & Lyu, J.-L. (2017). Transcatheter closure of congenital perimembranous ventricular sep-tal defect using the Amplatzer duct occluder 2. Cardiology in the Young, 28(03), 447–453. https://doi.org/10.1017/S1047951117002396.
    8. Spies, C., Cao, Q.-L., & Hijazi, Z. M. (2010). Transcatheter closure of congenital and acquired septal defects. European Heart Journal Supplements, 12(Suppl E), E24–E34. https://doi.org/10.1093/eurheartj/suq006.
    9. Ghosh, S., Sridhar, A., & Sivaprakasam, M. (2017). Complete heart block following transcatheter closure of perimembranous VSD using amplatzer duct occluder II. Catheterization and Cardiovascular Interventions. https://doi.org/10.1002/ccd.27177.
    10. Mandal KD, Su D, Pang Y. Long-Term Outcome of Transcatheter Device Closure of Perimembranous Ventricular Septal Defects. Front Pediatr. 2018 May 3;6:128.. PMID: 29774208; PMCID: PMC5943568. https://doi.org/10.3389/fped.2018.00128.
    11. Mijangos-Vázquez R, El-Sisi A, Sandoval Jones JP, García-Montes JA, Hernández-Reyes R, Sobhy R, Abdelmassih A, Soliman MM, Ali S, Moli-na-Sánchez T, Zabal C. Transcatheter Closure of Perimembranous Ventricular Septal Defects Using Different Generations of Amplatzer Devices: Multicenter Experience. J Interv Cardiol. 2020 Feb 21;2020:8948249.. PMID: 32161516; PMCID: PMC7054803. https://doi.org/10.1155/2020/8948249.
    12. Shrestha M, Promphan W, Layangool T, Roymanee S, Wongwaitaweewong K, Prachasilchai P, Kirawittaya T, Sangtawesin C, Pattarakunwiwat P. Feasibility and 1-year outcome of transcatheter closure of perimembranous ventricular septal defects with different devices. Catheter Cardiovasc Interv. 2019 Jan 1;93(1):E30-E37. Epub 2018 Sep 30. PMID: 30269417. https://doi.org/10.1002/ccd.27851.
    13. Kanaan, M., Ewert, P., Berger, F. et al. Follow-Up of Patients with Interventional Closure of Ventricular Septal Defects with Amplatzer Duct Oc-cluder II. Pediatr Cardiol 36, 379–385 (2015). https://doi.org/10.1007/s00246-014-1017-0.
    14. Celiker, A., Aypar, E., Karagöz, T., Dilber, E., & Ceviz, N. (2005). Transcatheter closure of patent ductus arteriosus with Nit-Occlud coils. Cathe-terization and Cardiovascular Interventions, 65(4), 569–576. https://doi.org/10.1002/ccd.20423.
    15. Moore, J. W., Greene, J., Palomares, S., Javois, A., Owada, C. Y., Cheatham, J. P., Levi, D. S. (2014). Results of the Combined U.S. Multicenter Pivotal Study and the Continuing Access Study of the Nit-Occlud PDA Device for Percutaneous Closure of Patent Ductus Arteriosus. JACC: Cardiovascular Interventions, 7(12), 1430–1436. https://doi.org/10.1016/j.jcin.2014.06.019.
    16. Caliskan, E., Cox, J., Holmes, D. et al. Interventional and surgical occlusion of the left atrial appendage. Nat Rev Cardiol 14, 727–743 (2017). https://doi.org/10.1038/nrcardio.2017.107.
    17. Robinson, S.S., Alaie, S., Sidoti, H. et al. Patient-specific design of a soft occluder for the left atrial appendage. Nat Biomed Eng 2, 8–16 (2018). https://doi.org/10.1038/s41551-017-0180-z.
    18. Romero, J., Natale, A., Engstrom, K., & Di Biase, L. (2016). Left atrial appendage isolation using percutaneous (endocardial/epicardial) devices: Pre-clinical and clinical experience. Trends in Cardiovasmcular Medicine, 26(2), 182–199. https://doi.org/10.1016/j.tcm.2015.05.009.
    19. Reddy, V. Y., Sievert, H., Halperin, J., Doshi, S. K., Buchbinder, M., Neuzil, P., … Holmes, D. (2014). Percutaneous Left Atrial Appendage Clo-sure vs Warfarin for Atrial Fibrillation. JAMA, 312(19), 1988. https://doi.org/10.1001/jama.2014.15192.
    20. Tzikas, A., et al. (2016). "Left atrial appendage occlusion for stroke prevention in atrial fibrillation: multicentre experience with the AMPLATZE5R Cardiac Plug." EuroIntervention 11(10): 1170-1179. https://doi.org/10.4244/EIJY15M01_06.
    21. Hsiao HM, Wang YP, Ko CY, Cheng YH, Lee HY. A Novel Nitinol Spherical Occlusion Device for Liver Cancer. Materials (Basel). 2016 Jan 2;9(1):19. PMID: 28787820; PMCID: PMC5456572. https://doi.org/10.3390/ma9010019.
    22. Li YF, Chen ZW, Xie ZF, Wang SS, Xie YM, Zhang ZW. Recent Development of Biodegradable Occlusion Devices for Intra-Atrial Shunts. Rev Cardiovasc Med. 2024 May 8;25(5):159. PMID: 39076475; PMCID: PMC11267192. https://doi.org/10.31083/j.rcm2505159.
    23. Sun, Y., Xia, Y., Zhang, X., Li, W., & Xing, Q. (2020). An innovative occluder for cardiac defect: 3D printing and a biocompatibility research based on self‐developed bioabsorbable material—LA–GA–TMC. Journal of Biomedical Materials Research Part B: Applied Biomaterials. https://doi.org/10.1002/jbm.b.34550.
    24. Lu, W., Ouyang, W., Wang, S., Liu, Y., Zhang, F., Wang, W., & Pan, X. (2018). A novel totally biodegradable device for effective atrial septal defect closure: A 2-year study in sheep. Journal of Interventional Cardiology. https://doi.org/10.1111/joic.12550.
    25. Li, Y., Xie, Y., Chen, J., Li, B., Xie, Z., Wang, S., & Zhang, Z. (2019). Initial experiences with a novel biodegradable device for percutaneous clo-sure of atrial septal defects: From preclinical study to first‐in‐human experience. Catheterization and Cardiovascular Interventions. https://doi.org/10.1002/ccd.28529.
    26. Sigler, M., & Jux, C. (2007). Biocompatibility of septal defect closure devices. Heart, 93(4), 444–449. https://doi.org/10.1136/hrt.2006.098103.
    27. Minocha, P. K., Kothwala, D., Shah, K., Machhi, D., Sharma, R., & Patel, K. (2025). Evaluation of safety and effectiveness of the Floret™ PDA oc-cluder for transcatheter closure of patent ductus arteriosus in pediatric patients. International Journal for Research in Applied Science & Engineering Technology (IJRASET). https://doi.org/10.22214/ijraset.2025.72793
    28. Liu, SJ., Peng, KM., Hsiao, CY. et al. Novel Biodegradable Polycaprolactone Occlusion Device Combining Nanofibrous PLGA/Collagen Mem-brane for Closure of Atrial Septal Defect (ASD). Ann Biomed Eng 39, 2759–2766 (2011). https://doi.org/10.1007/s10439-011-0368-4.
    29. Jux, C., Bertram, H., Wohlsein, P., Bruegmann, M., & Paul, T. (2006). Interventional Atrial Septal Defect Closure Using a Totally Bioresorbable Occluder Matrix. Journal of the American College of Cardiology, 48(1), 161–169. https://doi.org/10.1016/j.jacc.2006.02.057.
    30. Xu, Q., Fa, H., Yang, P., Wang, Q., & Xing, Q. (2024). Progress of biodegradable polymer application in cardiac occluders. Journal of biomedical materials research. Part B, Applied biomate rials, 112(1), e35351. https://doi.org/10.1002/jbm.b.35351.
    31. Sigler M, Söderberg B, Schmitt B, Mellmann A, Bernhard J. Carag bioresorbable septal occluder (CBSO): histopathology of experimental implants. EuroIntervention. 2018 Feb 20;13(14):1655-1661. PMID: 28555594. https://doi.org/10.4244/EIJ-D-17-00006.
    32. Pavcnik D, Tekulve K, Uchida BT, Luo ZH, Jeromel M, Van Alstine WG, Keller FS, Rösch J. Double BioDisk: a new bioprosthetic device for transcatheter closure of atrial septal defects - a feasibility study in adult sheep. Radiol Oncol. 2012 Jun;46(2):89-96. Epub 2012 May 30. PMID: 23077444; PMCID: PMC3472939. https://doi.org/10.2478/v10019-012-0029-8.
    33. Zhang, Z., Xiong, Y., Hu, J., Guo, X., Xu, X., Chen, J., Wang, Y., & Chen, Y. (2022). A Finite Element Investigation on Material and Design Pa-rameters of Ventricular Septal Defect Occluder Devices. Journal of Functional Biomaterials, 13(4), 182. https://doi.org/10.3390/jfb13040182.
    34. Li, Z., Kong, P., Liu, X., Feng, S., Ouyang, W., Wang, S., Hu, X., Xie, Y., Zhang, F., Zhang, Y., Gao, R., Wang, W., & Pan, X. (2022). A fully biodegradable polydioxanone occluder for ventricle septal defect closure. Bioactive materials, 24, 252–262. https://doi.org/10.1016/j.bioactmat.2022.12.018.
    35. Wu, Y., Gao, X., Wu, J., Zhou, T., Nguyen, T. T., & Wang, Y. (2023). Biodegradable Polylactic Acid and Its Composites: Characteristics, Pro-cessing, and Sustainable Applications in Sports. Polymers, 15(14), 3096. https://doi.org/10.3390/polym15143096.
    36. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346. https://doi.org/10.1016/S0142-9612(00)00101-0.
    37. Bergström, J.S., Hayman, D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Ann Biomed Eng 44, 330–340 (2016). https://doi.org/10.1007/s10439-015-1455-8.
    38. Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153–162. https://doi.org/10.1016/j.addr.2016.03.012.
    39. Zhao, W., Zhang, F., Leng, J., & Liu, Y. (2019). Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Composites Science and Technology, 107866. https://doi.org/10.1016/j.compscitech.2019.107866.
    40. Zhang, F., Wang, L., Zheng, Z., Liu, Y., & Leng, J. (2019). Magnetic programming of 4D printed shape memory composite structures. Composites Part A: Applied Science and Manufacturing, 125, 105571. https://doi.org/10.1016/j.compositesa.2019.105571.
    41. Da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A. Biocompatibility, biodegradation and excretion of polylac-tic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal. 2018 May 15;340:9-14. https://doi.org/10.1016/j.cej.2018.01.010.
    42. Wang C, Zhang P. Design and characterization of PDO biodegradable intravascular stents. Textile Research Journal. 2017;87(16):1968-1976. https://doi.org/10.1177/0040517516660893.
    43. Goonoo, N., Jeetah, R., Bhaw-Luximon, A., & Jhurry, D. (2015). Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. European Journal of Pharmaceutics and Biopharmaceutics, 97, 371–391. https://doi.org/10.1016/j.ejpb.2015.05.024.
    44. Huang, X., Zhu, Y., Cao, J., Hu, J., Bai, Y., Jiang, H., … Qin, Y. (2012). Development and preclinical evaluation of a biodegradable ventricular septal defect occluder. Catheterization and Cardiovascular Interventions, 81(2), 324–330. https://doi.org/10.1002/ccd.24580.
    45. Zhu X Hang Can H Y. Bai, IL Jung Che W Wang Qu Khan, Animal experimental study of the fully biodegradable atral septal defect (ASD) oc-cluder Biomed Biotechnol chinol. 2012 (2012) 1-10. https://doi.org/10.1155/2012/735989.
    46. Ramaraju, H., Verga, A. S., Steedley, B. J., Kowblansky, A. P., Green, G. E., & Hollister, S. J. (2025). Investigation of the biodegradation kinetics and associated mechanical properties of 3D-printed polycaprolactone during long-term preclinical testing. Biomaterials, 321, 123257. https://doi.org/10.1016/j.biomaterials.2025.123257.
    47. Ntrivala, M. A., & Pitsavas, A. (2025). Polycaprolactone (PCL): The biodegradable polyester shaping the future of materials—A review on synthe-sis, properties, biodegradation, applications, and future perspectives. European Polymer Journal, 200, 114033. https://doi.org/10.1016/j.eurpolymj.2025.114033.
    48. Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2017). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science, Polymer Edition, 29(7-9), 863–893. https://doi.org/10.1080/09205063.2017.1394711.
    49. Majunke, N., & Sievert, H. (2007). ASD/PFO devices: what is in the pipeline?. Journal of interventional cardiology, 20(6), 517–523. https://doi.org/10.1111/j.1540-8183.2007.00303.x.
    50. Saver, J. L., Carroll, J. D., Thaler, D. E., Smalling, R. W., MacDonald, L. A., Marks, D. S., Tirschwell, D. L., & RESPECT Investigators (2017). Long-Term Outcomes of Patent Foramen Ovale Closure or Medical Therapy after Stroke. The New England journal of medicine, 377(11), 1022–1032. https://doi.org/10.1056/NEJMoa1610057.
    51. Mijangos-Vázquez, R., García-Montes, A. J., Soto-López, E. M., Guarner-Lans, V., & Zabal, C. (2018). Atrial septal defect closure with the new Cardia Ultrasept II™ device with interposed Goretex patch: Mexican experience - has the perforation of Ivalon's membrane been solved?. Cardiol-ogy in the young, 28(5), 709–714. https://doi.org/10.1017/S1047951118000100.
    52. Thanopoulos, B. D., Biasco, L., Dardas, P., De Backer, O., Avraamides, P., Deleanou, D., Ninios, V., Mavrommatis, P. P., & Soendergaard, L. (2014). Catheter closure of atrial septal defects using the Cocoon septal occluder: preliminary results of a European multicenter study. International journal of cardiology, 177(2), 418–422. https://doi.org/10.1016/j.ijcard.2014.09.006.
    53. Heath, A., Alvensleben, I. V., Navarro, J., Echazú, G., Kozlik-Feldmann, R., & Freudenthal, F. (2019). Developing High Medical Technology, a Challenge for Developing Countries: The Percutaneous Closure of Atrial Septal Defects Using Nit-Occlud ASD-R: Early and Mid-term Results. World journal for pediatric & congenital heart surgery, 10(4), 433–439. https://doi.org/10.1177/2150135119845257.
    54. Bulut, M. O., Yucel, I. K., Kucuk, M., Balli, S., Basar, E. Z., & Celebi, A. (2016). Initial Experience with the Nit-Occlud ASD-R: Short-Term Re-sults. Pediatric cardiology, 37(7), 1258-1265. https://doi.org/10.1007/s00246-016-1426-3.
    55. Araszkiewicz, A., Sławek, S., Trojnarska, O., Lesiak, M., & Grygier, M. (2018). Interventional closure of patent foramen ovale with Nit-occlud® device in prevention of recurrent neurologic events-Long-term results. Catheterization and cardiovascular interventions : official journal of the Soci-ety for Cardiac Angiography & Interventions, 92(1), 159–164. https://doi.org/10.1002/ccd.27386.
    56. Steinberg, D. H., Bertog, S. C., Momberger, J., Franke, J., Hofmann, I., Renkhoff, K., Joy, S., Vaskelyte, L., & Sievert, H. (2015). Initial experi-ence with the novel patent foramen ovale occlusion device Nit-Occlud® in patients with stroke or transient ischemic attack. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 85(7), 1262–1267. https://doi.org/10.1002/ccd.25580.
    57. Astarcioglu, M. A., Kalcik, M., Sen, T., Aykan, A. C., Gokdeniz, T., Gursoy, O. M., Karakoyun, S., Kulahcioglu, S., Gunduz, S., Kilit, C., Oy-lumlu, M., & Amasyali, B. (2015). Ceraflex versus Amplatzer occluder for secundum atrial septal defect closure. Multicenter clinical experience. Herz, 40 Suppl 2, 146–150. https://doi.org/10.1007/s00059-014-4192-0
    58. Celiker, A., Aypar, E., Karagöz, T., Dilber, E., & Ceviz, N. (2005). Transcatheter closure of patent ductus arteriosus with Nit-Occlud coils. Cathe-terization and cardiovascular interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 65(4), 569–576. https://doi.org/10.1002/ccd.20423.
    59. Tanidir, I. C., Baspinar, O., Saygi, M., Kervancioglu, M., Guzeltas, A., & Odemis, E. (2020). Use of Lifetech™ Konar-MF, a device for both perimembranous and muscular ventricular septal defects: A multicentre study. International journal of cardiology, 310, 43–50. https://doi.org/10.1016/j.ijcard.2020.02.056.
    60. C.A. Esteves, L.A. Solarewicz, R. Cassar, J.R. Neves, V. Esteves, R. Arrieta, Occlusion of the perimembranous ventricular septal defect using CERA(R) devices, Catheter. Cardiovasc. Interv. 80 (2012) 182–187. https://doi.org/10.1002/ccd.24371.
    61. S.C. Apostolopoulou , A. Tsoutsinos , C. Laskari , M. Kiaffas , S. Rammos , Large single centre experience with the Cera TM and CeraFlex TM occluders for clo- sure of interatrial communications: usefulness of the flexible rotation feature, Cardiovasc. Interv. Ther. 33 (2018) 70–76 https://doi.org/10.1007/s12928-016-0440-y.
    62. Park, H., Song, J., Kim, E. S., Huh, J., & Kang, I. S. (2018). Early Experiences Using Cocoon Occluders for Closure of a Ventricular Septal Defect. Journal of Cardiovascular Imaging, 26(3), 165–174. https://doi.org/10.4250/jcvi.2018.26.e19.
    63. Seeger, J., Birkemeyer, R., Rottbauer, W., & Wöhrle, J. (2017). First experience with the Watchman FLX occluder for percutaneous left atrial ap-pendage closure. Cardiovascular revascularization medicine : including molecular interventions, 18(7), 512–516. https://doi.org/10.1016/j.carrev.2017.04.018.
    64. J. Saw , Editorial commentary: percutaneous left atrial appendage closure for stroke prevention, Trends Cardiovasc. Med. 26 (2016) 200–201. https://doi.org/10.1016/j.tcm.2015.06.006.
    65. Yu, C. M., Khattab, A. A., Bertog, S. C., Lee, A. P., Kwong, J. S., Sievert, H., & Meier, B. (2013). Mechanical antithrombotic intervention by LAA occlusion in atrial fibrillation. Nature reviews. Cardiology, 10(12), 707–722. https://doi.org/10.1038/nrcardio.2013.158.
    66. Romero, J., Natale, A., Engstrom, K., & Di Biase, L. (2016). Left atrial appendage isolation using percutaneous (endocardial/epicardial) devices: Pre-clinical and clinical experience. Trends in cardiovascular medicine, 26(2), 182–199. https://doi.org/10.1016/j.tcm.2015.05.009.
    67. D.H.F. Chow , Y. Wong , J. Park , Y. Lam , T. De Potter , J. Rodés-Cabau , L. As- marats , M. Sandri , E. Sideris , T. McCaw , R.J. Lee , H. Sie-vert , L. Søndergaard , O. De Backer , An overview of current and emerging devices for percutaneous left atrial appendage closure, Trends Cardio-vasc. Med. 29 (2019) 228–236. https://doi.org/10.1016/j.tcm.2018.08.008.
    68. Tang, X., Zhang, Z., Wang, F., Bai, Y., Xu, X., Huang, X., Zhao, X., Gong, S., & Qin, Y. (2017). Percutaneous Left Atrial Appendage Closure With LACBES® Occluder - A Preclinical Feasibility Study. Circulation journal : official journal of the Japanese Circulation Society, 82(1), 87–92. https://doi.org/10.1253/circj.CJ-17-0412.
    69. Lam, Y. Y., Yip, G. W., Yu, C. M., Chan, W. W., Cheng, B. C., Yan, B. P., Clugston, R., Yong, G., Gattorna, T., & Paul, V. (2012). Left atrial appendage closure with AMPLATZER cardiac plug for stroke prevention in atrial fibrillation: initial Asia-Pacific experience. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 79(5), 794–800. https://doi.org/10.1002/ccd.23136.
    70. A. Tzikas , S. Shakir , S. Gafoor , H. Omran , S. Berti , G. Santoro , J. Kefer , U. Landmesser , J.E. Nielsen-Kudsk , I. Cruz-Gonzalez , H. Sievert , T. Tichel- backer , P. Kanagaratnam , F. Nietlispach , A. Aminian , F. Kasch , X. Freixa , P. Danna , M. Rezzaghi , P. Vermeersch , F. Stock , M. Stolcova , M. Costa , R. Ibrahim , W. Schillinger , B. Meier , J.W. Park , Left atrial appendage oc- clusion for stroke prevention in atrial fibrillation: multicentre experi- ence with the AMPLATZER cardiac plug, EuroIntervention 11 (2016) 1170–1179. https://doi.org/10.4244/EIJY15M01_06.
    71. I. Cruz-Gonzalez , J.C. Rama-Merchan , J. Rodriguez-Collado , J. Martin-Moreiras , A . Diego-Nieto , A . Arribas-Jimenez , P.L. Sanchez-Fernandez , Left atrial ap- pendage closure devices for cardiovascular risk reduction in atrial fibrillation patients, Res. Rep. Clin. Cardiol. 6 (2015) 47. https://doi.org/10.2147/RRCC.S48337.
    72. X. Freixa , J.L.K. Chan , A. Tzikas , P. Garceau , A. Basmadjian , R. Ibrahim , The Amplatzer TM Cardiac Plug 2 for left atrial appendage occlu-sion: Novel features and first-in-man experience, EuroIntervention 8 (2013) 1094–1098. https://doi.org/10.4244/EIJV8I9A167.
    73. Sideris, E. B., Toumanides, S., Macuil, B., Gutierrez-Leonard, H., Poursanov, M., Sokolov, A., & Moulopoulos, S. D. (2002). Transcatheter patch correction of secundum atrial septal defects. The American journal of cardiology, 89(9), 1082–1086. https://doi.org/10.1016/S0002-9149(02)02280-4.
    74. Li, Y. F., Xie, Y. M., Chen, J., Li, B. N., Xie, Z. F., Wang, S. S., & Zhang, Z. W. (2020). Initial experiences with a novel biodegradable device for percutaneous closure of atrial septal defects: From preclinical study to first-in-human experience. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions, 95(2), 282–293. https://doi.org/10.1002/ccd.28529.
    75. Pavcnik, D., Tekulve, K., Uchida, B. T., Luo, Z. H., Jeromel, M., Van Alstine, W. G., Keller, F. S., & Rösch, J. (2012). Double BioDisk: a new bio-prosthetic device for transcatheter closure of atrial septal defects - a feasibility study in adult sheep. Radiology and oncology, 46(2), 89–96. https://doi.org/10.2478/v10019-012-0029-8.
    76. Sigler, M., Söderberg, B., Schmitt, B., Mellmann, A., & Bernhard, J. (2018). Carag bioresorbable septal occluder (CBSO): histopathology of exper-imental implants. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 13(14), 1655–1661. https://doi.org/10.4244/EIJ-D-17-00006.
    77. Duong-Hong, D., Tang, Y. D., Wu, W., Venkatraman, S. S., Boey, F., Lim, J., & Yip, J. (2010). Fully biodegradable septal defect occluder-a dou-ble umbrella design. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 76(5), 711–718. https://doi.org/10.1002/ccd.22735.
    78. C. Lin , J. Lv , Y. Li , F. Zhang , J. Li , Y. Liu , L. Liu , J. Leng , 4D-Printed biodegrad- able and remotely controllable shape memory occlusion devices, Adv. Funct. Mater. 0 (2019) 1906569 . https://doi.org/10.1002/adfm.201906569.
    79. Lin, C., Liu, L., Liu, Y., & Leng, J. (2021). 4D Printing of Bioinspired Absorbable Left Atrial Appendage Occluders: A Proof-of-Concept Study. ACS applied materials & interfaces, 13(11), 12668–12678. https://doi.org/10.1021/acsami.0c17192.
    80. Huang, Y., Wong, Y. S., Wu, J., Kong, J. F., Chan, J. N., Khanolkar, L., Rao, D. P., Boey, F. Y., & Venkatraman, S. S. (2014). The mechanical behavior and biocompatibility of polymer blends for Patent Ductus Arteriosus (PDA) occlusion device. Journal of the mechanical behavior of bio-medical materials, 36, 143–160. https://doi.org/10.1016/j.jmbbm.2014.04.012.
    81. Huang, Y. Y., Wong, Y. S., Chan, J. N., & Venkatraman, S. S. (2015). A fully biodegradable patent ductus arteriosus occlude. Journal of materials science. Materials in medicine, 26(2), 93. https://doi.org/10.1007/s10856-015-5422-6.
    82. Huang, X. M., Zhu, Y. F., Cao, J., Hu, J. Q., Bai, Y., Jiang, H. B., Li, Z. F., Chen, Y., Wang, W., & Qin, Y. W. (2013). Development and preclini-cal evaluation of a biodegradable ventricular septal defect occluder. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 81(2), 324–330. https://doi.org/10.1002/ccd.24580.
    83. B.N. Li, Y.M. Xie, Z.F. Xie, X.M. Chen, G. Zhang, D.Y. Zhang, X.D. Liu, Z.W. Zhang, Study of biodegradable occluder of atrial septal defect in a porcine model, Catheter. Cardiovasc. Interv. 93 (2019) E38–E45. https://doi.org/10.1002/ccd.27852.
    84. Xie, Z.-F., Wang, S.-S., Zhang, Z.-W., Zhuang, J., Liu, X.-D., Chen, X.-M., … Zhang, D. (2016). A Novel-Design Poly-L-Lactic Acid Biode-gradable Device for Closure of Atrial Septal Defect: Long-Term Results in Swine. Cardiology, 135(3), 179–187. https://doi.org/10.1159/000446313.
    85. G. Morgan, K. Lee, R. Chaturvedi, L. Benson, A biodegradable device (BioSTARTM) for atrial septal defect closure in children, Cathete. Cardio-vasc. Interv. 76 (2010) 241–245. https://doi.org/10.1002/ccd.22517.
    86. Meril Life Sciences. (2025). Floret™ VSD Occluder for Ventricular Septal Defect Closure.Available at: https://www.merillife.com/our-products/vascular-intervention/floret-vsd.
    87. S. Kazmouz, D. Kenny, Q. Cao, CJ. Kavinsky, ZM. Hijazi, Transcatheter closure of secundum atrial septal defects, J. Invasive Cardiol. 25 (2013) 257. [85] M. Chessa, M. Carminati, G. Butera, R.M. Bini, M. Drago, L. Rosti, A. Giamberti.
    88. Meril Life Sciences. (2025). Floret™ VSD Occluder for Ventricular Septal Defect Closure. Retrieved from Meril Life Sciences website: https://www.merillife.com.
    89. Zhang, X., Chen, S., Li, W., Jilaihawi, H., Piayda, K., Sievert, H., Zhou, D., Pan, W., & Ge, J. (2022). A Novel Puncturable Atrial Septal Defect Occluder: The Results of Preclinical Experiment and First-in-Human Study. JACC. Basic to translational science, 7(12), 1200–1210. https://doi.org/10.1016/j.jacbts.2022.06.010.
    90. Xu, Q., Fa, H., Yang, P., Wang, Q., & Xing, Q. (2024). Progress of biodegradable polymer application in cardiac occluders. Journal of biomedical materials research. Part B, Applied biomaterials, 112(1), e35351. https://doi.org/10.1002/jbm.b.35351
    91. Ntousi, O., Roumpi, M., Siogkas, P. K., Polyzos, D., Kakkos, I., Matsopoulos, G. K., & Fotiadis, D. I. (2025). Advances in Computational Model-ing of Scaffolds for Bone Tissue Engineering: A Narrative Review of the Current Approaches and Challenges. Biomechanics, 5(4), 76. https://doi.org/10.3390/biomechanics5040076.
    92. Meril Life Sciences. (2025). Floret™ ASD – Occluder for Atrial Septal Defect closure. Available at: https://www.merillife.com/our-products/vascular-intervention/floret-asd.
  • Downloads

  • How to Cite

    Khan, T. I. ., Rajpurohit, S. ., Patil, R. ., Bajpayee, L. ., Patil , B. U. ., Kumar, V. ., Dubey, V. K. ., & Shetty , K. K. . (2026). Evolution and Innovations of Occluder Devices: A Review of Traditional and Cutting-Edge ‎Technologies. International Journal of Basic and Applied Sciences, 15(1), 124-135. https://doi.org/10.14419/4wm99607