A Power-Saving Classification Module for The Internet of Things ‎Enclosed Wireless Sensors Embedded in Smart Controllers

  • Authors

    • Dr. R. Gayathri Assistant Professor, Department of Electronics and Communication Engineering, ‎Karpagam Academy of Higher Education, Coimbatore
    • Dr. P. Gnanasundari Associate Professor, RV University, Bangalore
    • Dr. S. Padmanaban Professor, Department of Mathematics - Science and Humanities, ‎Karpagam Institute of Technology, Coimbatore ‎
    • Dr. B. Suganthi Associate Professor, Department of ECE, RVS College of Engineering and Technology, Coimbatore
    • Poornima R. Assistant Professor, Department of ECE, SNS College of Technology, Coimbatore
    • Prof. Nitin Chakole Assistant Professor, Department of Electronics and Communication Engineering, ‎ Ramdeobaba University, Nagpur
    https://doi.org/10.14419/q2va4b09

    Received date: September 11, 2025

    Accepted date: November 10, 2025

    Published date: November 15, 2025

  • DRL; IoT; Power Saving; Process Allocation; Smart Controllers
  • Abstract

    Internet of Things (IoT), combined with wireless sensor network (WSN) devices, interacts with smart controllers within industries or buildings, etc., to accomplish field jobs. The jobs/ tasks are completed based on the controller's decision, power-saving, and sustainable operation ‎intervals. To improve the power savings of such devices, a Control-dependent Process Classification Module (CdPCM) is proposed in this ‎article. This proposed module balances the controller operation time and the number of input controls based on a low-power sustainable ‎feature. The feature identifies the maximum operation time of the controller before reaching the recharging state. In this process, the IoT ‎layers are responsible for commissioning and decommissioning jobs for the low-power operations. Thus, the input controls are relocated ‎from the overloaded controllers to sustain their active state until an alternate controller is reassigned. Thus, the power-saving schedules are ‎allocated for the sensor-based controllers to accomplish the tasks with minimal inactive time. The factor classification based on the above ‎feature is recurrent until the controller operation interval is active, using deep recurrent learning networks. The proposed module improves ‎power saving by 11.22%, reduces the power consumption by 11.03% and idle power loss by 10.67% for the varying job intervals‎.

  • References

    1. Bhatt, K., Agrawal, C., & Bisen, A. M. (2024). A Review on Emerging Applications of IoT and Sensor Technology for Industry 4.0. Wireless Per-sonal Communications, 134(4), 2371-2389. https://doi.org/10.1007/s11277-024-11054-x.
    2. Lee, B. M. (2024). Efficient Power Control Strategies for Massive MIMO in High-Density Massive IoT Networks. IEEE Internet of Things Journal, 11(12), 21773-21787. https://doi.org/10.1109/JIOT.2024.3378688.
    3. Huang, S., Zhang, J., Lyu, Z., & Bai, X. (2025). Research on data-driven combined network reconfiguration and local control with smart inverter for voltage regulation problem. Energy Reports, 13, 2000-2012. https://doi.org/10.1016/j.egyr.2025.01.051.
    4. Oh, J., Park, K., & Hwang, Y. H. (2024). A 10-Gb/s/lane, Energy-Efficient Transceiver with Reference-Less Hybrid CDR for Mobile Display Link Interfaces. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 33(3), 887-891. https://doi.org/10.1109/TVLSI.2024.3472073.
    5. Scanzio, S., Quarta, F., Paolini, G., Formis, G., & Cena, G. (2024). Ultra-Low Power and Green TSCH-Based WSNs With Proactive Reduction of Idle Listening. IEEE Internet of Things Journal, 11(17), 29076-29088. https://doi.org/10.1109/JIOT.2024.3406646.
    6. El Ghati, O., Alaoui-Fdili, O., Chahbouni, O., Alioua, N., & Bouarifi, W. (2024). Artificial intelligence-powered visual internet of things in smart cities: A comprehensive review. Sustainable Computing: Informatics and Systems, 43,101004. https://doi.org/10.1016/j.suscom.2024.101004.
    7. Bhoi, S. K., Chakraborty, S., Verbrugge, B., Helsen, S., Robyns, S., El Baghdadi, M., & Hegazy, O. (2024). Intelligent data-driven condition moni-toring of power electronics systems using smart edge–cloud framework. Internet of Things, 26, 101158. https://doi.org/10.1016/j.iot.2024.101158.
    8. Hadri, S., Najib, M., Bakhouya, M., Fakhri, Y., Taifour, Z., & Gaber, J. (2025). Amismart an advanced metering infrastructure for power consump-tion monitoring and forecasting in smart buildings. Discover Computing, 28(1), 1-28. https://doi.org/10.1007/s10791-025-09640-z.
    9. Bathre, M., & Das, P. K. (2024). Design & implementation of smart power management system for self-powered wireless sensor nodes based on fuzzy logic controller using Proteus & Arduino Mega 2560 microcontroller. Journal of Energy Storage, 97, 112961. https://doi.org/10.1016/j.est.2024.112961.
    10. Zeng, Y., Hussein, Z. A., Chyad, M. H., Farhadi, A., Yu, J., & Rahbarimagham, H. (2025). Integrating type-2 fuzzy logic controllers with digital twin and neural networks for advanced hydropower system management. Scientific Reports, 15(1), 5140. https://doi.org/10.1038/s41598-025-89866-5.
    11. Andreotti, A., Caiazzo, B., Fridman, E., Petrillo, A., & Santini, S. (2024). Distributed dynamic event-triggered control for voltage recovery in is-landed microgrids by using artificial delays. IEEE Transactions on Cybernetics, 54(7), 3890-3903. https://doi.org/10.1109/TCYB.2024.3364820.
    12. Mallikarjun, P., Thulasiraman, S. R. G., Balachandran, P. K., & Zainuri, M. A. A. M. (2025). Economic energy optimization in microgrid with PV/wind/battery integrated wireless electric vehicle battery charging system using improved Harris Hawk optimization. Scientific Reports, 15(1), 10028. https://doi.org/10.1038/s41598-025-94285-7
    13. Tarif, M., Homaei, M., & Mosavi, A. (2025). An Enhanced Fuzzy Routing Protocol for Energy Optimization in the Underwater Wireless Sensor Networks. Computers, Materials & Continua, 83(2), 1791-1820. https://doi.org/10.32604/cmc.2025.063962.
    14. Mbungu, N. T., Bansal, R. C., Naidoo, R. M., Siti, M. W., Ismail, A. A., Elnady, A., & Hamid, A. K. (2024). Performance analysis of different control models for smart demand–supply energy management system. Journal of Energy Storage, 90(B), 111809. https://doi.org/10.1016/j.est.2024.111809.
    15. Liu, H. H., Lin, K. H., & Wei, H. Y. (2023). NR DCP: An enhanced power saving mechanism with wake-up signal enabled DRX. IEEE Transac-tions on Green Communications and Networking, 8(1), 2-17. https://doi.org/10.1109/TGCN.2023.3312707.
    16. Nsaif, M., Kovásznai, G., Malik, A., & De Fréin, R. (2024). SM-FPLF: Link-state prediction for software-defined DCN power optimization. IEEE Access, 12,79496-79518. https://doi.org/10.1109/ACCESS.2024.3408672.
    17. Singh, A., Salameh, H. A. B., Ayyash, M., & Elgala, H. (2024). Efficient Power Allocation and Saving Framework for VLC-Enabled Indoor Net-works With Crowded Heterogeneous Obstacles. IEEE Sensors Journal, 24(9), 15491-15500. https://doi.org/10.1109/JSEN.2024.3382160.
    18. Wang, X., Wang, C., Liu, Z., Kang, Y., & Wang, Z. (2025). Electric heating control of agricultural greenhouse in winter using an embedded tech-nology based chaotic particle swarm optimization PID controller. International Communications in Heat and Mass Transfer, 164 (A), 108777. https://doi.org/10.1016/j.icheatmasstransfer.2025.108777.
    19. Rao, C. K., Sahoo, S. K., & Yanine, F. F. (2024). Design and deployment of a novel decisive algorithm to enable real-time optimal load scheduling within an intelligent smart energy management system based on IoT. Energy Reports, 12, 579-592. https://doi.org/10.1016/j.egyr.2024.06.030.
    20. Emami, A., Chitsaz, A., & Nouri, A. (2025). IoT-Driven smart energy management with a closed PEMFC-PEMEC loop: A sustainable approach to decarbonizing flexible buildings in London. Smart Energy, 19, 100191. https://doi.org/10.1016/j.segy.2025.100191.
    21. Sirisumrannukul, S., Intaraumnauy, T., & Piamvilai, N. (2024). Optimal control of cooling management system for energy conservation in smart home with ANNs-PSO data analytics microservice platform. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e26937.
    22. Zhao, L., & Yin, L. (2025). Fully-connected layers-embedded self-attention optimizer based on quantum-inspired and fuzzy logic for smart house-hold energy management. Sustainable Computing: Informatics and Systems, 47, 101151. https://doi.org/10.1016/j.suscom.2025.101151.
    23. Pandey, S. K., Goyal, P., Pandey, R. K., & Panigrahi, B. K. (2025). Energy Optimization in Consumer Lightings: An IoT-Based Adaptive Control Mode. IEEE Transactions on Consumer Electronics, 71(1), 2285-2296. https://doi.org/10.1109/TCE.2025.3531131
    24. Zhong, C., Nie, X., & Peng, P. (2024). Novel power conservation methods for LoRa-based infrared sensors in smart building. IEEE Sensors Jour-nal, 24(9), 15311-15326. https://doi.org/10.1109/JSEN.2024.3378332.
    25. Yang, L., Ma, B., Yuan, L., & Wu, B. (2024). Effective application of iot power electronics technology and power system optimization control. Tsinghua Science and Technology, 29(6), 1763-1775. https://doi.org/10.26599/TST.2023.9010124.
    26. Boutahri, Y., & Tilioua, A. (2025). Reinforcement learning for HVAC control and energy efficiency in residential buildings with BOPTEST simula-tions and real-case validation. Discover Computing, 28(1), 45. https://doi.org/10.1007/s10791-025-09544-y.
    27. Keshavarz, R., Sounas, D. L., Keshavarz, S., & Shariati, N. (2024). Enabling Wireless Communications, Energy Harvesting, and Energy Saving by Using a Multimode Smart Nonlinear Circuit (MSNC). IEEE Transactions on Instrumentation and Measurement, 73. https://doi.org/10.1109/TIM.2024.3369141.
  • Downloads

  • How to Cite

    Gayathri, D. R. . ., Gnanasundari, D. P. . ., Padmanaban , D. S. ., Suganthi , D. B. ., R. , P. ., & Chakole, P. N. . . (2025). A Power-Saving Classification Module for The Internet of Things ‎Enclosed Wireless Sensors Embedded in Smart Controllers. International Journal of Basic and Applied Sciences, 14(7), 414-423. https://doi.org/10.14419/q2va4b09