A Power-Saving Classification Module for The Internet of Things Enclosed Wireless Sensors Embedded in Smart Controllers
-
https://doi.org/10.14419/q2va4b09
Received date: September 11, 2025
Accepted date: November 10, 2025
Published date: November 15, 2025
-
DRL; IoT; Power Saving; Process Allocation; Smart Controllers -
Abstract
Internet of Things (IoT), combined with wireless sensor network (WSN) devices, interacts with smart controllers within industries or buildings, etc., to accomplish field jobs. The jobs/ tasks are completed based on the controller's decision, power-saving, and sustainable operation intervals. To improve the power savings of such devices, a Control-dependent Process Classification Module (CdPCM) is proposed in this article. This proposed module balances the controller operation time and the number of input controls based on a low-power sustainable feature. The feature identifies the maximum operation time of the controller before reaching the recharging state. In this process, the IoT layers are responsible for commissioning and decommissioning jobs for the low-power operations. Thus, the input controls are relocated from the overloaded controllers to sustain their active state until an alternate controller is reassigned. Thus, the power-saving schedules are allocated for the sensor-based controllers to accomplish the tasks with minimal inactive time. The factor classification based on the above feature is recurrent until the controller operation interval is active, using deep recurrent learning networks. The proposed module improves power saving by 11.22%, reduces the power consumption by 11.03% and idle power loss by 10.67% for the varying job intervals.
-
References
- Bhatt, K., Agrawal, C., & Bisen, A. M. (2024). A Review on Emerging Applications of IoT and Sensor Technology for Industry 4.0. Wireless Per-sonal Communications, 134(4), 2371-2389. https://doi.org/10.1007/s11277-024-11054-x.
- Lee, B. M. (2024). Efficient Power Control Strategies for Massive MIMO in High-Density Massive IoT Networks. IEEE Internet of Things Journal, 11(12), 21773-21787. https://doi.org/10.1109/JIOT.2024.3378688.
- Huang, S., Zhang, J., Lyu, Z., & Bai, X. (2025). Research on data-driven combined network reconfiguration and local control with smart inverter for voltage regulation problem. Energy Reports, 13, 2000-2012. https://doi.org/10.1016/j.egyr.2025.01.051.
- Oh, J., Park, K., & Hwang, Y. H. (2024). A 10-Gb/s/lane, Energy-Efficient Transceiver with Reference-Less Hybrid CDR for Mobile Display Link Interfaces. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 33(3), 887-891. https://doi.org/10.1109/TVLSI.2024.3472073.
- Scanzio, S., Quarta, F., Paolini, G., Formis, G., & Cena, G. (2024). Ultra-Low Power and Green TSCH-Based WSNs With Proactive Reduction of Idle Listening. IEEE Internet of Things Journal, 11(17), 29076-29088. https://doi.org/10.1109/JIOT.2024.3406646.
- El Ghati, O., Alaoui-Fdili, O., Chahbouni, O., Alioua, N., & Bouarifi, W. (2024). Artificial intelligence-powered visual internet of things in smart cities: A comprehensive review. Sustainable Computing: Informatics and Systems, 43,101004. https://doi.org/10.1016/j.suscom.2024.101004.
- Bhoi, S. K., Chakraborty, S., Verbrugge, B., Helsen, S., Robyns, S., El Baghdadi, M., & Hegazy, O. (2024). Intelligent data-driven condition moni-toring of power electronics systems using smart edge–cloud framework. Internet of Things, 26, 101158. https://doi.org/10.1016/j.iot.2024.101158.
- Hadri, S., Najib, M., Bakhouya, M., Fakhri, Y., Taifour, Z., & Gaber, J. (2025). Amismart an advanced metering infrastructure for power consump-tion monitoring and forecasting in smart buildings. Discover Computing, 28(1), 1-28. https://doi.org/10.1007/s10791-025-09640-z.
- Bathre, M., & Das, P. K. (2024). Design & implementation of smart power management system for self-powered wireless sensor nodes based on fuzzy logic controller using Proteus & Arduino Mega 2560 microcontroller. Journal of Energy Storage, 97, 112961. https://doi.org/10.1016/j.est.2024.112961.
- Zeng, Y., Hussein, Z. A., Chyad, M. H., Farhadi, A., Yu, J., & Rahbarimagham, H. (2025). Integrating type-2 fuzzy logic controllers with digital twin and neural networks for advanced hydropower system management. Scientific Reports, 15(1), 5140. https://doi.org/10.1038/s41598-025-89866-5.
- Andreotti, A., Caiazzo, B., Fridman, E., Petrillo, A., & Santini, S. (2024). Distributed dynamic event-triggered control for voltage recovery in is-landed microgrids by using artificial delays. IEEE Transactions on Cybernetics, 54(7), 3890-3903. https://doi.org/10.1109/TCYB.2024.3364820.
- Mallikarjun, P., Thulasiraman, S. R. G., Balachandran, P. K., & Zainuri, M. A. A. M. (2025). Economic energy optimization in microgrid with PV/wind/battery integrated wireless electric vehicle battery charging system using improved Harris Hawk optimization. Scientific Reports, 15(1), 10028. https://doi.org/10.1038/s41598-025-94285-7
- Tarif, M., Homaei, M., & Mosavi, A. (2025). An Enhanced Fuzzy Routing Protocol for Energy Optimization in the Underwater Wireless Sensor Networks. Computers, Materials & Continua, 83(2), 1791-1820. https://doi.org/10.32604/cmc.2025.063962.
- Mbungu, N. T., Bansal, R. C., Naidoo, R. M., Siti, M. W., Ismail, A. A., Elnady, A., & Hamid, A. K. (2024). Performance analysis of different control models for smart demand–supply energy management system. Journal of Energy Storage, 90(B), 111809. https://doi.org/10.1016/j.est.2024.111809.
- Liu, H. H., Lin, K. H., & Wei, H. Y. (2023). NR DCP: An enhanced power saving mechanism with wake-up signal enabled DRX. IEEE Transac-tions on Green Communications and Networking, 8(1), 2-17. https://doi.org/10.1109/TGCN.2023.3312707.
- Nsaif, M., Kovásznai, G., Malik, A., & De Fréin, R. (2024). SM-FPLF: Link-state prediction for software-defined DCN power optimization. IEEE Access, 12,79496-79518. https://doi.org/10.1109/ACCESS.2024.3408672.
- Singh, A., Salameh, H. A. B., Ayyash, M., & Elgala, H. (2024). Efficient Power Allocation and Saving Framework for VLC-Enabled Indoor Net-works With Crowded Heterogeneous Obstacles. IEEE Sensors Journal, 24(9), 15491-15500. https://doi.org/10.1109/JSEN.2024.3382160.
- Wang, X., Wang, C., Liu, Z., Kang, Y., & Wang, Z. (2025). Electric heating control of agricultural greenhouse in winter using an embedded tech-nology based chaotic particle swarm optimization PID controller. International Communications in Heat and Mass Transfer, 164 (A), 108777. https://doi.org/10.1016/j.icheatmasstransfer.2025.108777.
- Rao, C. K., Sahoo, S. K., & Yanine, F. F. (2024). Design and deployment of a novel decisive algorithm to enable real-time optimal load scheduling within an intelligent smart energy management system based on IoT. Energy Reports, 12, 579-592. https://doi.org/10.1016/j.egyr.2024.06.030.
- Emami, A., Chitsaz, A., & Nouri, A. (2025). IoT-Driven smart energy management with a closed PEMFC-PEMEC loop: A sustainable approach to decarbonizing flexible buildings in London. Smart Energy, 19, 100191. https://doi.org/10.1016/j.segy.2025.100191.
- Sirisumrannukul, S., Intaraumnauy, T., & Piamvilai, N. (2024). Optimal control of cooling management system for energy conservation in smart home with ANNs-PSO data analytics microservice platform. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e26937.
- Zhao, L., & Yin, L. (2025). Fully-connected layers-embedded self-attention optimizer based on quantum-inspired and fuzzy logic for smart house-hold energy management. Sustainable Computing: Informatics and Systems, 47, 101151. https://doi.org/10.1016/j.suscom.2025.101151.
- Pandey, S. K., Goyal, P., Pandey, R. K., & Panigrahi, B. K. (2025). Energy Optimization in Consumer Lightings: An IoT-Based Adaptive Control Mode. IEEE Transactions on Consumer Electronics, 71(1), 2285-2296. https://doi.org/10.1109/TCE.2025.3531131
- Zhong, C., Nie, X., & Peng, P. (2024). Novel power conservation methods for LoRa-based infrared sensors in smart building. IEEE Sensors Jour-nal, 24(9), 15311-15326. https://doi.org/10.1109/JSEN.2024.3378332.
- Yang, L., Ma, B., Yuan, L., & Wu, B. (2024). Effective application of iot power electronics technology and power system optimization control. Tsinghua Science and Technology, 29(6), 1763-1775. https://doi.org/10.26599/TST.2023.9010124.
- Boutahri, Y., & Tilioua, A. (2025). Reinforcement learning for HVAC control and energy efficiency in residential buildings with BOPTEST simula-tions and real-case validation. Discover Computing, 28(1), 45. https://doi.org/10.1007/s10791-025-09544-y.
- Keshavarz, R., Sounas, D. L., Keshavarz, S., & Shariati, N. (2024). Enabling Wireless Communications, Energy Harvesting, and Energy Saving by Using a Multimode Smart Nonlinear Circuit (MSNC). IEEE Transactions on Instrumentation and Measurement, 73. https://doi.org/10.1109/TIM.2024.3369141.
-
Downloads
-
How to Cite
Gayathri, D. R. . ., Gnanasundari, D. P. . ., Padmanaban , D. S. ., Suganthi , D. B. ., R. , P. ., & Chakole, P. N. . . (2025). A Power-Saving Classification Module for The Internet of Things Enclosed Wireless Sensors Embedded in Smart Controllers. International Journal of Basic and Applied Sciences, 14(7), 414-423. https://doi.org/10.14419/q2va4b09
