Designing Scalable Multivariate Testing ‎Frameworks for High-Traffic E-Commerce ‎Platforms

  • Authors

    • Eshita Gupta University of Tampa
    https://doi.org/10.14419/47mq5944

    Received date: September 2, 2025

    Accepted date: September 12, 2025

    Published date: December 10, 2025

  • Multivariate Testing; E-commerce Optimization; Scalability; Experimentation Framework; ‎Statistical Analysis
  • Abstract

    Abstract: High-traffic e-commerce outlets use experimentation to perfect the user experience and, in ‎turn, conversions and revenue. Multivariate testing, however, acts as an elegant solution, ‎considering changes occurring in multiple variables and their interaction effects simultaneously, ‎thus generating richer insights than in the scenario of an A/B test. Nonetheless, the implementation ‎of a scalable multivariate testing framework on such large platforms harbors considerable ‎architectural challenges, data infrastructure issues, and, most importantly, statistical and operational ‎integration concerns. This paper covers complete principles, system design considerations, and ‎statistical methods that guide the construction of engineering-grade privacy-compliant ‎experimentation systems that support millions of concurrent users. By considering architecture ‎approaches, data pipelines, performance improvements, and integration with personalization, ‎inventory, and marketing systems, current best practices for performing experimentation as a ‎fundamental operational capability are offered. Topics discussed in case studies offer evidence-‎based stories on successes and pitfalls on the canvas, emerging trends such as reinforcement ‎learning and privacy-preserving analytics that will dictate the future of experimentation in e-‎commerce‎.

  • References

    1. Kohavi, R., Tang, D., & Xu, Y. (2020). Trustworthy online controlled experiments: A practical guide to A/B testing. Cambridge University Press. https://doi.org/10.1017/9781108653985.
    2. Xu, Y., Chen, N., Fernandez, A., Sinno, O., & Bhasin, A. (2015). From infrastructure to culture: A/B testing challenges in large-scale social networks. In Proc. 21st ACM SIGKDD (pp. 2227–2236). https://doi.org/10.1145/2783258.2788602.
    3. Petrović, G., & Ivanković, M. (2018). State of mutation testing at Google. In Proc. ICSE-SEIP (pp. 163–171). https://doi.org/10.1145/3183519.3183521.
    4. Li, X., Makkie, M., Lin, B., Fazli, M. S., Davidson, I., Ye, J., & Quinn, S. (2016). Scalable fast rank-1 dictionary learning for fMRI big data analysis. In Proc. KDD (pp. 511–519). https://doi.org/10.1145/2939672.2939730.
    5. Tang, D., Agarwal, A., O’Brien, D., & Meyer, M. (2010). Overlapping experiment infrastructure: More, better, faster experimentation. In Proc. KDD (pp. 17–26). https://doi.org/10.1145/1835804.1835810.
    6. Bakshy, E., Eckles, D., & Bernstein, M. S. (2014). Designing and deploying online field experiments. In Proc. WWW (pp. 283–292). https://doi.org/10.1145/2566486.2567967.
    7. Deng, A., Xu, Y., Kohavi, R., & Walker, T. (2013). Improving sensitivity of online controlled experiments using pre-experiment data. In Proc. WSDM (pp. 123–132). https://doi.org/10.1145/2433396.2433413.
    8. Cobbe, J., Lee, M. S. A., & Singh, J. (2021). Reviewable automated decision-making: A framework for accountable algorithmic systems. In Proc. FAccT (pp. 598–609). https://doi.org/10.1145/3442188.3445921.
    9. Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news on Facebook. Science, 348(6239), 1130–1132. https://doi.org/10.1126/science.aaa1160.
    10. Deng, A., & Shi, X. (2016). Data-driven metric development for online controlled experiments. In Proc. KDD (pp. 77–86). https://doi.org/10.1145/2939672.2939700.
    11. Antunes, B., Cordeiro, J., & Gomes, P. (2012). Context-based recommendation in software development. In Proc. RecSys (pp. 171–178). https://doi.org/10.1145/2365952.2365986.
    12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. SIGKDD Ex-plorations, 11(1), 10–18. https://doi.org/10.1145/1656274.1656278.
    13. Canfora, G., & Di Penta, M. (2006). Service-oriented architectures testing: A survey. In: International Summer School on Software Engineering (pp. 78–105). Springer. https://doi.org/10.1007/978-3-540-95888-8_4.
    14. Veeraraghavan, K., Chen, P. M., Flinn, J., & Narayanasamy, S. (2011). Detecting and surviving data races using complementary schedules. In Proc. SOSP (pp. 369–384). https://doi.org/10.1145/2043556.2043590.
    15. Martin, A., Anslow, C., & Johnson, D. (2017). Teaching agile methods: 10 years, 1000 release plans. In Proc. Agile Conference (pp. 151–166). Springer. https://doi.org/10.1007/978-3-319-57633-6_10.
    16. Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). Social networks in information diffusion. In Proc. WWW (pp. 519–528). https://doi.org/10.1145/2187836.2187907.
    17. Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). RNN for multivariate time series with missing values. Scientific Reports, 8, 6085. https://doi.org/10.1038/s41598-018-24271-9.
    18. Junqué de Fortuny, E., Stankova, M., Moeyersoms, J., Minnaert, B., Provost, F., & Martens, D. (2014). Corporate residence fraud detection. In Proc. KDD (pp. 1650–1659). https://doi.org/10.1145/2623330.2623333.
    19. Mertler, C. A., Vannatta, R. A., & LaVenia, K. N. (2021). Advanced and multivariate statistical methods. Routledge. https://doi.org/10.4324/9781003047223.
    20. Kohavi, R., Longbotham, R., Sommerfield, D., & Henne, R. M. (2009). Controlled experiments on the web. DMKD, 18(1), 140–181. https://doi.org/10.1007/s10618-008-0114-1.
    21. Kohavi, R., Henne, R. M., & Sommerfield, D. (2007). Practical guide to controlled experiments: Listen to your customers. In Proc. KDD (pp. 959–967). https://doi.org/10.1145/1281192.1281295.
    22. Gui, H., Xu, Y., Bhasin, A., & Han, J. (2015). Network A/B testing: From sampling to estimation. In Proc. WWW (pp. 399–409). https://doi.org/10.1145/2736277.2741081.
    23. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., & Pohlmann, N. (2013). Online controlled experiments at large scale. In Proc. KDD (pp. 1168–1176). https://doi.org/10.1145/2487575.2488217.
    24. Ge, B., Li, X., Jiang, X., Sun, Y., & Liu, T. (2018). Dictionary learning for fMRI signal sampling. Frontiers in Neuroinformatics, 12, 17. https://doi.org/10.3389/fninf.2018.00017.
    25. Wester, B., Devecsery, D., Chen, P. M., Flinn, J., & Narayanasamy, S. (2013). Parallelizing data race detection. In Proc. ASPLOS (pp. 27–38). https://doi.org/10.1145/2451116.2451120.
    26. Petrović, G., Ivanković, M., Fraser, G., & Just, R. (2021). Practical mutation testing at scale: A view from Google. IEEE TSE, 48(10), 3900–3912. https://doi.org/10.1109/TSE.2021.3107634.
    27. Kapur, N., Lytkin, N., Chen, B. C., Agarwal, D., & Perisic, I. (2016). Ranking universities via career outcomes. In Proc. KDD (pp. 137–144). https://doi.org/10.1145/2939672.2939701.
    28. Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker, T., & Xu, Y. (2012). Five puzzling A/B outcomes explained. In Proc. KDD (pp. 786–794). https://doi.org/10.1145/2339530.2339653.
    29. Burger, M., Sergeev, F., Londschien, M., Chopard, D., Yèche, H., Gerdes, E. C., … Faltys, M. (2024). Towards foundation models for critical time series. In AIM-FM Workshop @ NeurIPS 2024.
    30. Kohavi, R., & Longbotham, R. (2023). Online controlled experiments and A/B tests. In Encyclopedia of Machine Learning and Data Science (pp. 1–13). Springer. https://doi.org/10.1007/978-1-4899-7502-7_891-2.
  • Downloads

  • How to Cite

    Gupta, E. . (2025). Designing Scalable Multivariate Testing ‎Frameworks for High-Traffic E-Commerce ‎Platforms. International Journal of Basic and Applied Sciences, 14(8), 167-173. https://doi.org/10.14419/47mq5944