Addressing The Issues of Low Degrees of Freedom and Associated Poor Validation Estimates of Science Education Models: An Advocacy for The Application of Confirmatory Network Analysis
-
https://doi.org/10.14419/k92yd937
Received date: August 30, 2025
Accepted date: September 27, 2025
Published date: October 8, 2025
-
Bland-Altman Plots; Confirmatory Network Analysis; Confirmatory Factor Analysis; Degree of Freedom; Science Education Models -
Abstract
Generally, science education models have a low degree of freedom df, and this psychometric aspect negatively impacts the overall goodness of fit estimates obtained on conducting CB-SEM-based Confirmatory Factor Analysis (CFA) on the hypothesized latent models using the Maximum Likelihood (ML) estimator. To address this issue, the state-of-the-art Confirmatory Network Analysis (CNA) approach is advocated, which uses the adjacency matrix in estimation and treats the data type of the data collected using survey questionnaires as ordinal using the appropriate Diagonally Weighted Least Squares (DWLS) estimator to provide the proper scaled goodness of fit estimates of the network. In the present study, the goodness of fit estimates of a science education model involving the perception of 918 secondary school students of India on their science constructivist learning environment, epistemological beliefs in science, science self-efficacy, science academic flow, and science academic achievement were found from the traditional latent variable modeling and the latest network perspectives. Data analysis was conducted using SPSS AMOS Ver 23.0, several packages of R and through generated using ChatGPT Ver. 5. The scaled goodness of fit estimates of confirmatory network analysis produced a better picture of the reality over confirmatory factor analysis, and provided deeper insights on the interactions among the studied variables as were graphically established by the differences in the Bland-Altman plots of the CFI, TLI, RMSEA and SRMR estimates of the two approaches. Educational and psychometric implications of the study are discussed.
-
References
- Altman, D. G., & Bland, J. M. (1983). Measurement in Medicine: The Analysis of Method Comparison Studies. Journal of the Royal Statistical So-ciety. Series D (The Statistician), 32(3), 307–317. https://doi.org/10.2307/2987937.
- Arslantas, H.A. (2016). Epistemological Beliefs and Academic Achievement. Journal of Education and Training Studies, 4(1). 215-220. https://doi.org/10.11114/jets.v4i1.1107.
- Arbuckle, J. L. (2006). Amos (Version 7.0) [Computer Program]. Chicago: SPSS.
- Arbuckle, J. L. (2014). Amos (Version 23.0) [Computer Program]. Chicago, IL: IBM SPSS, Inc
- Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64, 1089–1108. https://doi.org/10.1002/jclp.20503.
- Bybee, R. W., (2015). The BSCS 5E instructional model: creating teachable moments. Arlington, Virginia :NSTA Press.
- Burger, J., Andikkhash, V., Jäger, N., Anderbro, T., Blanken, T. F., & Klintwall, L. (2024). A novel approach for constructing personalized net-works from longitudinal perceived causal relations. Behaviour Research and Therapy, 173, 104456. https://doi.org/10.1016/j.brat.2023.104456.
- Cortes, S.T., Lorca, A.S., Pineda, H.A., Tubog, R., & Vilbar, A. (2024). Strengthening science education in basic education through a professional development program on participatory action research for science teachers, Social Sciences and Humanities Open, 10, https://doi.org/10.1016/j.ssaho.2024.101194.
- Christensen, A. P., Golino, H., & Silvia, P.J. (2020). A psychometric network perspective on the validity and validation of personality trait ques-tionnaires. European Journal of Personality. https://doi.org/10.1002/per.2265.
- Christensen, A.P., Golino, H. (2021). On the equivalency of factor and network loadings. Behavior Research Methods. 53, 1563–1580. https://doi.org/10.3758/s13428-020-01500-6.
- Cho, G., M. Sarstedt, & H. Hwang. (2022). A Comparative Evaluation of Factor- and Component-based Structural Equation Modelling Approach-es Under (In) Correct Construct Representations. British Journal of Mathematical and Statistical Psychology, 75 (2):220–251. https://doi.org/10.1111/bmsp.12255.
- Cramer, A. O. J. (2012). Why the item “23+ 1” is not in a depression questionnaire: Validity from a network perspective. Measurement: Interdisci-plinary Research & Perspective, 10, 50–54. https://doi.org/10.1080/15366367.2012.681973.
- Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). 26-item Epistemological Beliefs Measure [Database record]. APA PsycTests. https://doi.org/10.1037/t15211-000.
- Du, X., Skjerdingstad, N., Freichel, R., Ebrahimi, O. V., Hoekstra, R. H. A., & Epskamp, S. (2025). Moving from exploratory to confirmatory net-work analysis: An evaluation of structural equation modeling fit indices and cutoff values in network psychometrics. Psychological Methods. Ad-vance online publication. https://doi.org/10.1037/met0000760.
- DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Thousand Oaks, CA: SAGE Publications.
- Epskamp, S., Maris, G., Waldorp, L. J., & Borsboom, D. (2018). Network psychometrics. In P. Irwing, T. Booth, & D. J. Hughes (Eds.), The Wiley handbook of psychometric testing: A multidisciplinary reference on survey, scale and test development (pp. 953–986). Wiley Blackwell. https://doi.org/10.1002/9781118489772.ch30.
- Epskamp S (2025). psychonetrics: Structural Equation Modeling and Confirmatory Network Analysis, R Package Version 0.7.1. Available online: https://cran.r-project.org/web/packages/psychonetrics/index.html.
- Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23, 617–634. https://doi.org/10.1037/met0000167.
- Epskamp S, Borsboom D, Fried EI (2018). “Estimating Psychological Networks and their Accuracy: A Tutorial Paper.” Behavior Research Meth-ods, 50, 195–212. https://doi.org/10.3758/s13428-017-0862-1.
- Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network Visualizations of Relationships in Psychometric Data. Journal of Statistical Software, 48(4), 1–18. https://doi.org/10.18637/jss.v048.i04.
- Fan, X., & Sivo, S. A. (2007). Sensitivity of fit indices to model misspecification and model types. Multivariate Behavioral Research, 42(3), 509–529. https://doi.org/10.1080/00273170701382864.
- Golino, H., & Epskamp, S. (2017). Exploratory Graph analysis: A new approach for estimating the number of dimensions in psychological research. PloS One, 12, e0174035. https://doi.org/10.1371/journal.pone.0174035.
- Glynn, S.M., & Koballa, T. R., Jr. (2006). Motivation to learn college science. In J. J. Mintzes & W. H. Leonard (Eds.), Handbook of college sci-ence teaching (pp. 25-32). Arlington, VA: National Science Teachers Association Press.
- Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia Medica (Zagreb). 25(2):141-51. https://doi.org/10.11613/BM.2015.015.
- Heutte, J., Fenouillet, F., Kaplan, J., Martin-Krumm, C. and Bachelet, R. (2016). The EduFlow model – A contribution toward the study of optimal learning environments. In L. Harmat, F. Ø. Andersen, F. Ullén, J. Wright and G. Sadlo (dir.). Flow Experience: Empirical Research and Applica-tions (p. 124-143). Cham, Suisse: Springer. https://doi.org/10.1007/978-3-319-28634-1_9.
- Honicke, T., Broadbent, J., & Fuller-Tyszkiewicz, M. (2023). The self-efficacy and academic performance reciprocal relationship: the influence of task difficulty and baseline achievement on learner trajectory. Higher Education Research & Development, 42(8), 1936–1953. https://doi.org/10.1080/07294360.2023.2197194.
- Haslbeck, J.M.B., & Waldorp, L J. (2017). How well do network models predict observations? On the importance of predictability in network models. Behavior Research Methods. 50(2):853-861. https://doi.org/10.3758/s13428-017-0910-x.
- Hair, J.F., Babin, B.J., Ringle, C.M., Sarstedt, M., & Becker, J. (2025). Covariance based structural equation modeling (CB SEM): a SmartPLS 4 software tutorial, Journal of Marketing Analytics, https://doi.org/10.1057/s41270-025-00414-6.
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struc-tural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118.
- Hallquist, M., Wright, A. C. G., & Molenaar, P. C. M. (2019). Problems with centrality measures in psychopathology symptom networks: Why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2019.1640103.
- Jöreskog, K. G. (1978). Structural Analysis of Covariance and Correlation Matrices. Psychometrika, 43 (4): 443–477. https://doi.org/10.1007/BF02293808.
- Jöreskog, K. G., & Wold, H. (1982). The ML and PLS techniques for modeling with latent variables: Historical and comparative aspects. In H. Wold & K. G. Jöreskog (Eds.), Systems under indirect observation, part I (pp. 263–270). Amsterdam: North-Holland.
- Jöreskog, K. G. (1993). Testing Structural Equation Models. In Testing Structural Equation Models, ed. K. A. Bollen and J. S. Long, 294–316. Thousand Oaks: Sage.
- Jia,F., Meng, J., Ma, Y., & Mao,Y. (2024). Flow experience and self-efficacy in undergraduates’ English learning: A weekly diary investigation with cross-lagged panel modeling approach, System, 123, 103312, ISSN 0346-251X, https://doi.org/10.1016/j.system.2024.103312.
- Kline, M.S. (2013). Application of Structural Equation Modeling in Educational Research and Practice, Springer. https://doi.org/10.1007/978-94-6209-332-4.
- Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling. New York: Guilford Publications.
- Kan, K.J., de Jonge, H., van der Maas, H.L.J., Levine, S.Z., & Epskamp, S. (2020). How to Compare Psychometric Factor and Network Models. Journal of Intelligence, 8(4):35. https://doi.org/10.3390/jintelligence8040035.
- Kazu, I.Y. & Yalcin, C.K. (2021). The Effect of Stem Education on Academic Performance: A Meta-Analysis Study, TOJET: The Turkish Online Journal of Educational Technology, 20(4), 101-116.
- Kim, J. (2005). The Effects of a Constructivist Teaching Approach on Student Academic Achievement, Self-concept, and Learning Strategies, Asia Pacific Education Review, 6(1)., 7-19. https://doi.org/10.1007/BF03024963.
- Klintwall, L., Bellander, M., & Cervin, M. (2023). Perceived causal problem networks: Reliability, central problems, and clinical utility for depres-sion. Assessment, 30(1), 73–83. https://doi.org/10.1177/10731911211039281.
- Kline, R. B., & Little, T. D. (2023). Principles and practice of structural equation modeling (Fifth edition). The Guilford Press.
- Li, CH. (2021). Statistical estimation of structural equation models with a mixture of continuous and categorical observed variables. Behavior Re-search Methods. 53, 2191–2213. https://doi.org/10.3758/s13428-021-01547-z.
- Lehnert, B. (2015). BlandAltmanLeh: Plots (Slightly Extended) Bland-Altman Plots. R package version 0.3.1, https://CRAN.R-project.org/package=BlandAltmanLeh.
- McLure, F., Won, M., & Treagust, D. F. (2024). Science teachers’ understanding of creative thinking and how to foster it as mandated by the Aus-tralian Curriculum. Journal of Science Teacher Education. https://doi.org/10.1080/1046560X.2024.2313882.
- Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., & Maris, G. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53, 15–35. https://doi.org/10.1080/00273171.2017.1379379.
- Mindrila, M. (2010). Maximum Likelihood (ML) and Diagonally Weighted Least Squares (DWLS) Estimation Procedures: A Comparison of Esti-mation Bias with Ordinal and Multivariate Non-Normal Data, International Journal of Digital Society (IJDS), 1(1), 60-66. https://doi.org/10.20533/ijds.2040.2570.2010.0010.
- Nix, R.K., Fraser, B.J. & Ledbetter, C.E. (2005). Evaluating an Integrated Science Learning Environment Using the Constructivist Learning Envi-ronment Survey. Learning Environments Research. 8, 109–133. https://doi.org/10.1007/s10984-005-7251-x.
- Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computational models of cognition. Psychological Review, 109(3), 472–491. https://doi.org/10.1037/0033-295X.109.3.472.
- Pedersen, T. (2025). patchwork: The Composer of Plots. R package version 1.3.2.9000, https://patchwork.data-imaginist.com.
- Popper, K. R. (1959). Logic of scientific discovery. London : Hutchinson. https://doi.org/10.1063/1.3060577.
- R Core Team (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.
- Rosseel, Y. (2012). Lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48: 1–36. https://doi.org/10.18637/jss.v048.i02.
- Shi, D., DiStefano, C., Maydeu-Olivares, A., & Lee, T. (2021). Evaluating SEM Model Fit with Small Degrees of Freedom. Multivariate Behavior-al Research, 57(2–3), 179–207. https://doi.org/10.1080/00273171.2020.1868965.
- Shi D, Lee T, Maydeu-Olivares A. (2018). Understanding the Model Size Effect on SEM Fit Indices. Educational and Psychological Measurement. 79(2):310-334. https://doi.org/10.1177/0013164418783530.
- Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A net-work perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43–53. https://doi.org/10.1016/j.newideapsych.2011.02.007.
- Sadi, O. & Dagyar, M. (2015). High School Students’ Epistemological Beliefs, Conceptions of Learning, and Self-efficacy for Learning Biology: A Study of Their Structural Models, Eurasia Journal of Mathematics, Science & Technology Education, 11(5), 1061-1079. https://doi.org/10.12973/eurasia.2015.1375a.
- Taasoobshirazi, G., & Wang, S. (2016). The performance of the SRMR, RMSEA, CFI, and TLI: An examination of sample size, path size, and de-grees of freedom. Journal of Applied Quantitative Methods, 11(3), 31- 39.
- Ullman, J.B. (2006) Structural Equation Modeling: Reviewing the Basics and Moving Forward, Journal of Personality Assessment, 87:1, 35-50, https://doi.org/10.1207/s15327752jpa8701_03.
- Van Der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842–861. https://doi.org/10.1037/0033-295X.113.4.842.
- Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). Model comparison and the principle of parsimony. In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels (Eds.), Oxford library of psychology. The Oxford handbook of computational and mathematical psychology (p. 300–319). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199957996.013.14.
- van Bork, R., Rhemtulla, M., Waldorp, L. J., Kruis, J., Rezvanifar, S., & Borsboom, D. (2019). Latent variable models and networks: Statistical equivalence and testability. Multivariate Behavioral Research, pp. 1–24. https://doi.org/10.1080/00273171.2019.1672515.
- Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
- Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428. https://doi.org/10.3758/s13428-018-1055-2.
-
Downloads
-
How to Cite
Pilla, S., & Chakraborty, R. (2025). Addressing The Issues of Low Degrees of Freedom and Associated Poor Validation Estimates of Science Education Models: An Advocacy for The Application of Confirmatory Network Analysis. International Journal of Basic and Applied Sciences, 14(6), 152-159. https://doi.org/10.14419/k92yd937
