Comparative Analysis of Machine Learning and Deep Learning Approaches for Hourly Soil Temperature Estimation At Multiple Depths from Meteorological Data in A Semi-Arid Region of Burkina Faso
-
https://doi.org/10.14419/wcverd98
Received date: August 30, 2025
Accepted date: October 1, 2025
Published date: October 12, 2025
-
Soil Temperature; Subsurface Modeling; Deep Learning; SHAP Analysis; Semi-Arid Climate -
Abstract
Accurate estimation of soil temperature is essential for understanding land–atmosphere interactions and managing agricultural systems, par-particularly in semi-arid regions. This study evaluates and compares the performance of multiple modeling approaches: machine learning (Random Forest, XGBoost, LightGBM, SVR, GPR, Decision Tree), and deep learning (MLP-ANN, LSTM, ConvLSTM, Hybrid CNN–LSTM) to predict hourly soil temperature at depths of 10, 20, 30, and 40 cm in a semi-arid land from Burkina Faso. Using high-frequency meteorological data collected, the models were assessed based on their accuracy, temporal generalization, and variable importance. Results show that among ML models, Random Forest demonstrates strong performance up to 30 cm. Deep learning models, particularly ConvLSTM and Hybrid CNN–LSTM, outperform all others across depths, capturing the spatio-temporal variability of subsurface temperature with high fidelity. SHAP analysis reveals that air temperature (Ta) and solar radiation (RAD) dominate at the surface, while dew point tem-temperature (DPT) and vapor pressure deficit (VPD) gain importance in deeper layers. Variables such as rainfall, wind direction, and relative humidity show minimal contribution and can be excluded without sacrificing performance.
-
References
- Mampitiya, L., Rozumbetov, K., Rathnayake, N., Erkudov, V., Esimbetov, A., Arachchi, S., ... & Rathnayake, U. (2024). Artificial intelligence to predict soil temperatures by development of novel model. Scientific Reports, 14(1), 9889. https://doi.org/10.1038/s41598-024-60549-x.
- Elsayed, S., Gupta, M., Chaudhary, G., Taneja, S., Gaur, H., Gad, M., ... & Schmidhalter, U. (2023). Interpretation the influence of hydrometeoro-logical variables on soil temperature prediction using the potential of deep learning model. Knowledge-Based Engineering and Sciences, 4(1), 55-77. https://doi.org/10.51526/kbes.2023.4.1.55-77.
- Sattari, M. T., Avram, A., Apaydin, H., & Matei, O. (2020). Soil Temperature Estimation with Meteorological Parameters by Using Tree-Based Hybrid Data Mining Models. Mathematics, 8(9), 1407. https://doi.org/10.3390/math8091407.
- Hsieh, C. I., Chiu, C. J., Huang, I. H., & Visessri, S. (2023). Estimating Ground Heat Flux from Net Radiation. Atmosphere, 14(12), 1778. https://doi.org/10.3390/atmos14121778.
- Edmondson, J. L., Stott, I., Davies, Z. G., Gaston, K. J., & Leake, J. R. (2016). Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Scientific Reports, 6(1), 33708. https://doi.org/10.1038/srep33708.
- Asadzadeh, F., Emami, S., Elbeltagi, A., Akiner, M. E., Rezaverdinejad, V., Taran, F., & Salem, A. (2025). Investigating the impact of meteorolog-ical parameters on daily soil temperature changes using machine learning models. Scientific Reports, 15(1), 19988. https://doi.org/10.1038/s41598-025-04605-0.
- Taheri, M., Schreiner, H. K., Mohammadian, A., Shirkhani, H., Payeur, P., Imanian, H., & Cobo, J. H. (2023). A review of machine learning ap-proaches to soil temperature estimation. Sustainability, 15(9), 7677. https://doi.org/10.3390/su15097677.
- Šimůnek, J., Brunetti, G., Jacques, D., van Genuchten, M. T., & Šejna, M. (2024). Developments and applications of the HYDRUS computer soft-ware packages since 2016. Vadose Zone Journal, 23(4), e20310. https://doi.org/10.1002/vzj2.20310.
- Zhang, Y., Li, X., Šimůnek, J., Chen, N., Hu, Q., & Shi, H. (2024). Evaluating the effects of different irrigation water sources on soil temperature using HYDRUS (2D/3D) and considering the coupled movement of water and heat. Soil and Tillage Research, 244, 106259. https://doi.org/10.1016/j.still.2024.106259.
- Progga, J. F., Khan, M. N. H., & Amın, M. M. (2023). Meteorological Parameters–Soil Temperature Relations in a Sub-Tropical Summer Grassland: Physically-Based and Data-Driven Modeling. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 54(2), 48-56. https://doi.org/10.5152/AUAF.2023.23126.
- Alizamir, M., Ahmed, K. O., Kim, S., Heddam, S., Gorgij, A. D., & Chang, S. W. (2023). Development of a robust daily soil temperature estima-tion in semi-arid continental climate using meteorological predictors based on computational intelligent paradigms. PLoS One, 18(12), e0293751. https://doi.org/10.1371/journal.pone.0293751.
- Alizamir, M., Kisi, O., Ahmed, A. N., Mert, C., Fai, C. M., Kim, S., ... & El-Shafie, A. (2020). Advanced machine learning model for better predic-tion accuracy of soil temperature at different depths. PLoS One, 15(4), e0231055. https://doi.org/10.1371/journal.pone.0231055.
- Farhangmehr, V., Cobo, J. H., Mohammadian, A., Payeur, P., Shirkhani, H., & Imanian, H. (2023). A Convolutional Neural Network Model for Soil Temperature Prediction under Ordinary and Hot Weather Conditions: Comparison with a Multilayer Perceptron Model. Sustainability, 15(10), 7897. https://doi.org/10.3390/su15107897.
- Li-Xiaoning, X., Zhu, Y., Li, Q., Zhao, H., Zhu, J., & Zhang, C. (2023). Interpretable spatio-temporal modeling for soil temperature predic-tion. Frontiers in Forests and Global Change, 6, 1295731. https://doi.org/10.3389/ffgc.2023.1295731.
- Geng, Q., Wang, L., & Li, Q. (2024). Soil temperature prediction based on explainable artificial intelligence and LSTM. Frontiers in Environmental Science, 12, 1426942. https://doi.org/10.3389/fenvs.2024.1426942.
- Farhangmehr, V., Imanian, H., Mohammadian, A., Cobo, J. H., Shirkhani, H., & Payeur, P. (2025). A spatiotemporal CNN-LSTM deep learning model for predicting soil temperature in diverse large-scale regional climates. Science of The Total Environment, 968, 178901. https://doi.org/10.1016/j.scitotenv.2025.178901.
- Mohammed, S., Arshad, S., Ocwa, A., Al-Dalahmeh, M., ALDabbas, A., Alzoubi, M. M., ... & Harsányi, E. (2025). Advanced Attention-Driven Deep Learning Architectures for Multi-Depth Soil Temperature Prediction. Results in Engineering, 106508. https://doi.org/10.1016/j.rineng.2025.106508.
- Wang, Y., Shi, L., Hu, Y., Hu, X., Song, W., & Wang, L. (2023). A comprehensive study of deep learning for soil moisture prediction. Hydrology and Earth System Sciences Discussions, 2023, 1-38. https://doi.org/10.5194/hess-28-917-2024.
- Yu, F., Hao, H., & Li, Q. (2021). An Ensemble 3D Convolutional Neural Network for Spatiotemporal Soil Temperature Forecast-ing. Sustainability, 13(16), 9174. https://doi.org/10.3390/su13169174.
- Huang, F., Zhang, Y., Zhang, Y., Shangguan, W., Li, Q., Li, L., & Jiang, S. (2023). Interpreting Conv-LSTM for spatio-temporal soil moisture pre-diction in China. Agriculture, 13(5), 971. https://doi.org/10.3390/agriculture13050971.
- Ouoba Nebie, B. A., Lawane, A., Hema, C., & Siroux, M. (2025). Energy efficiency in the building sector in Burkina Faso: Literature review, SWOT analysis, and recommendations. Energies, 18(11), 2689. https://doi.org/10.3390/en18112689.
- Yıldırım, H. (2024). The multicollinearity effect on the performance of machine learning algorithms: Case examples in healthcare modelling. Asia-Pacific Journal of Educational, Social and Scientific Research, 12(3), 68–80. https://doi.org/10.21541/apjess.1371070.
- Chan, J. Y.-L., Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z.-W., & Chen, Y.-L. (2022). Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics, 10(8), 1283. https://doi.org/10.3390/math10081283.
- Mienye, I. D., & Jere, N. (2024). A survey of decision trees: Concepts, algorithms, and applications. IEEE access, 12, 86716-86727. https://doi.org/10.1109/ACCESS.2024.3416838.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
- Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimat-ing daily reference evapotranspiration with local and external meteorological data. Agricultural water management, 225, 105758. https://doi.org/10.1016/j.agwat.2019.105758.
- Airlangga, G.; Bata, J.; Adi Nugroho, O.I.; Lim, B.H.P. (2025). Hybrid CNN-LSTM Model with Custom Activation and Loss Functions for Pre-dicting Fan Actuator States in Smart Greenhouses. AgriEngineering , 7, 118. https://doi.org/10.3390/agriengineering7040118.
- Qian, L., Wu, L., Zhang, Z., Fan, J., Yu, X., Liu, X., ... & Cui, Y. (2024). A gap filling method for daily evapotranspiration of global flux data sets based on deep learning. Journal of Hydrology, 641, 131787. https://doi.org/10.1016/j.jhydrol.2024.131787.Li, A.; Zhang, W.; Zhang, X.; Chen, G.; Liu, X.; Jiang, A.; Zhou, F.; Peng, H. (2024). A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-Scale Hydrodynamic Prediction. Water, 16, 625. https://doi.org/10.3390/w16050625.
- Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. arXiv. https://arxiv.org/abs/1705.07874.
- Douanla, A. Y., Dembélé, A., Ossénatou, M., & Lenouo, A. (2022, February). Prediction of daily direct solar energy based on XGBoost in Came-roon and key parameter impacts analysis. In 2022 IEEE Multi-conference on Natural and Engineering Sciences for Sahel's Sustainable Development (MNE3SD) (pp. 1–7). IEEE. https://doi.org/10.1109/MNE3SD53781.2022.9723309.
-
Downloads
-
How to Cite
Dabilgou, F., Kébré, M. B., Gandema, S., & Koalaga, Z. (2025). Comparative Analysis of Machine Learning and Deep Learning Approaches for Hourly Soil Temperature Estimation At Multiple Depths from Meteorological Data in A Semi-Arid Region of Burkina Faso. International Journal of Basic and Applied Sciences, 14(6), 242-255. https://doi.org/10.14419/wcverd98
