Risk and Return Optimization Using Innovative Financial Modelling
-
https://doi.org/10.14419/r3t5ts54
Received date: August 24, 2025
Accepted date: November 6, 2025
Published date: November 21, 2025
-
Risk and Return; Financial Modeling; Secondary Data; Stock Prices; Trading -
Abstract
This paper investigates the relationship between risk and return using innovative financial modelling techniques applied to secondary data. By leveraging historical datasets, including stock prices, trading volumes, and market trends, the study develops predictive models that analyse market dynamics and optimize investment strategies. The secondary data-based approach is chosen due to the availability of high-quality, extensive datasets from reliable sources, such as stock exchanges and financial reports, which are essential for studying long-term trends and volatility. The research employs advanced statistical techniques, machine learning algorithms, and visualization tools to uncover hidden patterns and test hypotheses with precision. The results provide insights into risk-return trade-offs, optimal portfolio allocations, and the impact of market volatility on returns. This methodology not only ensures the robustness of the findings but also offers generalizability, making the results relevant for investors, financial institutions, and policymakers aiming to improve decision-making in dynamic market environments.
-
References
- Acerbi, C., Tasche, D., Expected shortfall: a natural coherent alternative value of risk, Journal of Economic Notes, 2002, 3(2), pp. 379-388. https://doi.org/10.1111/1468-0300.00091.
- Campana, E.F., Diez, M., Fasano. G., Peri, D., Improving the initial particles position and parameters selection for PSO in bound constrained opti-mization problems, Springer Lecture Notes in Computer Science, 2013, 7928, P. 112-119. https://doi.org/10.1007/978-3-642-38703-6_13.
- Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M., Heuristics for cardinality constrained portfolio optimization, Computers & Operations Re-search, 2000, 27(13), P. 1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X.
- Cong, F., Oosterlee, C.W., Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation, Journal of Economic Dynamics and Control, 2016, 64, P. 23-38. https://doi.org/10.1016/j.jedc.2016.01.001.
- DeMiguel, V., Mei, X., Nogales, F.J., Multiperiod portfolio optimization with multiple risky assets and general transaction costs, Journal of Banking & Finance, 2016, 69, P. 108-120. https://doi.org/10.1016/j.jbankfin.2016.04.002.
- Deng, G.F., Lin, W.T., Lo, C.C., Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization, Ex-pert Systems with Applications, 2012, 39(4), P. 4558-4566. https://doi.org/10.1016/j.eswa.2011.09.129.
- Gandomi, A.H., Alavi, A.H., Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simula-tion, 2012, 17(12), P. 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010.
- Ghodousi, S., Tehrani, R., Bashiri, M., Portfolio Optimization Using Simulated Annealing Method, Financial Research, 2012, 17(1), P. 142-158. Doi: 10.22059/jfr.2015.52036, (In Persian).
- Goldenberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, New York, Addison-Wesley Professional, 1989, https://doi.org/10.5860/CHOICE.27-0936.
- Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M., Competence_Driven Project Portfolio Selection, Scheduling and Staff Assign-ment, Central European Journal of Operations Research, 2008, 16(3), P. 281-306. https://doi.org/10.1007/s10100-008-0057-z.
- Guo, S., Yu, L., Li, X., Kar, S., Fuzzy multi-period portfolio selection with different investment horizons, European Journal of Operational Re-search, 2016, 254(3), P. 1026-1035. https://doi.org/10.1016/j.ejor.2016.04.055.
- Gupta, P., Mehlawat, M. K., Inuiguchi, M., Chandra, S., Fuzzy Portfolio Optimization, Springer-Verlag, Berlin, 2014. https://doi.org/10.1007/978-3-642-54652-5.
- Izadikhah, M., Saen, R.F., Roostaee, R., How to assess sustainability of suppliers in the presence of volume discount and negative data in data en-velopment analysis?, Annals of Operations Research, 2018, 269, P. 241–267, https://doi.org/10.1007/s10479-018-2790-6.
- Kandahari, M., Azar, A., Yazdanian, A., Gol Arazi, Gh., A Hybrid Model of Stochastic Dynamic Programming and Genetic Algorithm for Multi-stage Portfolio Optimization with GlueVaR Risk Measurement, Industrial Management, 2019, 11(3), P. 517-542.
- Karaboga, D., Akay, B., A comparative study of Artificial Bee Colony algorithm, Applied Mathematics and Computation, 2009, 214(1), P. 108-132. https://doi.org/10.1016/j.amc.2009.03.090.
- Kellerer, H., Mansini, R., Speranza, M.G., Selecting portfolios with fixed costs and minimum transaction lots, Annals of Operations Research, 2000, 99(1), P. 287-304. https://doi.org/10.1023/A:1019279918596.
- Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., Optimization by simulated annealing, Science, 1983, 220(4598), P. 671–680. https://doi.org/10.1126/science.220.4598.671.
- KUMAR, G., A.V.N., M., JEELAKARRA, S. R. K., GANAPATHY, S., G. R., S., & PADHY, S. (2025). Estimating the Factors Influencing Li-quidity Risk: Empirical Analysis of Indian Non-Banking Financial Institutions. Theoretical and Practical Research in Economic Fields, 16(2), 521. https://doi.org/10.14505/tpref.v16.2(34).20.
- Li, J., Xu, J., A novel portfolio selection model in a hybrid uncertain environment, Omega the International Journal of Management Science, 2009, 37(2). P. 439-449. https://doi.org/10.1016/j.omega.2007.06.002.
- Liu, Y.-J., Zhang, W.-G., Zhang, P., A multi-period portfolio selection optimization model by using interval analysis, Economic Modelling, 2013, 33, P. 113-119. https://doi.org/10.1016/j.econmod.2013.03.006.
- Liu, Y. J., Zhang, W. G., Xu, W. J., Fuzzy multi-period portfolio selection optimization models using multiple criteria, Automatica, 2012, 48(12), P. 3042-3053. https://doi.org/10.1016/j.automatica.2012.08.036.
- Liu, Y.-J., Zhang, W.-G., Zhang, Q., Credibilistic multi-period portfolio optimization model with bankruptcy control and affine recourse, Applied Soft Computing, 2016, 38, P. 890-906. https://doi.org/10.1016/j.asoc.2015.09.023.
- Liu, Y. J., Zhang, W. G., A multi-period fuzzy portfolio optimization model with minimum transaction lots, European Journal of Operational Re-search, 2015, 242(3), P. 933-941. https://doi.org/10.1016/j.ejor.2014.10.061.
- Markowitz, H.M., Portfolio selection", Journal of Finance, 1952, 7(1), P. 77-91. https://doi.org/10.2307/2975974.
- Mehlawat, M. K., Credibilistic mean-entropy models for multiperiod portfolio selection with multi-choice aspiration levels, Information Sciences, 2016, 345, P. 9-26. https://doi.org/10.1016/j.ins.2016.01.042.
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., Equation of State Calculations by Fast Computing Machines, Journal of Chemical Physics, 1953, 21(6), P.1087–1092. https://doi.org/10.1063/1.1699114.
- Mohammadi, E., Mohammadi, E., Ramtin Nia, Sh., Portfolio Optimization by Using the Symbiotic Organisms Search, Financial Research, 2016, 18(2), P. 369-390.
- Najafi, A., Nopour, K., Ghahtarani, A., Portfolio interval optimization with conditional value at risk measure, Financial Research, 2017, 19(1), P. 157-172.
- Osman, I.H., Kelly, J.P., Meta-Heuristics: An Overview, Boston: Kluwer Academic Publishers, 1996, P. 1-21. https://doi.org/10.1007/978-1-4613-1361-8_1.
- Qu, B.Y., Suganthan. P.N., Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods, Engineering Op-timization, 2011, 43(4), P. 403-416. https://doi.org/10.1080/0305215X.2010.493937.
- Rockafeller, T., Uryasev, S., Conditional value-at-risk for general loss distributions, Journal of Banking and Finance, 2002, 26(7), P. 1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6.
- Rockafeller, T., Uryasev, S., Optimization of conditional value-at-risk, Journal of Risk, 2000, 2(3), P. 21-41. https://doi.org/10.21314/JOR.2000.038.
- Schaerf, A., Local search techniques for constrained portfolio selection problems, Computational Economics, 2002, 20(3), P. 177-190. https://doi.org/10.1023/A:1020920706534.
- Tehrani, R., Falah Tafti, S., Asefi, S., Portfolio Optimization Using Krill Herd Metaheuristic Algorithm Considering Different Measures of Risk in Tehran Stock Exchange, Financial Research, 2018, 20(4), P. 409-426.
- Tunchan, C., Particle swarm optimization approach to portfolio optimization, Nonlinear Analysis Real World Applications, 2009, 10(4), P. 2396-2406. https://doi.org/10.1016/j.nonrwa.2008.04.023.
- Vercher, E., Bermúdez, J. D., Portfolio optimization using a credibility mean-absolute semi-deviation model, Expert Systems with Applications, 2015, 42(20), P. 7121-7131. https://doi.org/10.1016/j.eswa.2015.05.020.
- Yao, H., Li, Z., Li, D., Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 2016, 252(3), P. 837-851. https://doi.org/10.1016/j.ejor.2016.01.049.
- Zhang, W. G., Liu, Y. J., Xu, W. J., A possibilistic mean-semivarianceentropy model for multi-period portfolio selection with transaction costs, Eu-ropean Journal of Operational Research, 2012, 222(2), P. 341-349. https://doi.org/10.1016/j.ejor.2012.04.023.
-
Downloads
-
How to Cite
Deepika, V. V. . ., Murty, D. A. V. N. ., Kumar , G. ., Ganapathy , S. ., Raju , D. N. S. V. N. ., & Miyan , D. R. . (2025). Risk and Return Optimization Using Innovative Financial Modelling. International Journal of Basic and Applied Sciences, 14(7), 476-484. https://doi.org/10.14419/r3t5ts54
