Risk and Return Optimization Using Innovative Financial Modelling

  • Authors

    • Veereedhi V. Deepika Research Scholar, KL Business School, Koneru Lakshmaiah Education Foundation, Andhra ‎Pradesh, India
    • Dr. A. V. N. Murty Professor, KL Business School, Koneru Lakshmaiah Education Foundation, Vaddeswaram, ‎India
    • Gaurav Kumar Assistant Professor, Department of Commerce and Management, Sandip University
    • S. Ganapathy Department of Corporate Secretaryship S.A. College of Arts & Science, India
    • Dr. N. S. V. N. Raju Assistant Professor, ‎Faculty of Management ‎, Sharda University, Uzbekistan
    • Dr. Rahmuddin Miyan Assistant Professor, School of Commerce and Management, Sandip University
    https://doi.org/10.14419/r3t5ts54

    Received date: August 24, 2025

    Accepted date: November 6, 2025

    Published date: November 21, 2025

  • Risk and Return; Financial Modeling; Secondary Data; Stock Prices; Trading
  • Abstract

    This paper investigates the relationship between risk and return using innovative financial ‎modelling techniques applied to secondary data. By leveraging historical datasets, including ‎stock prices, trading volumes, and market trends, the study develops predictive models that ‎analyse market dynamics and optimize investment strategies. The secondary data-based ‎approach is chosen due to the availability of high-quality, extensive datasets from reliable ‎sources, such as stock exchanges and financial reports, which are essential for studying long-term trends and volatility. The research employs advanced statistical techniques, machine ‎learning algorithms, and visualization tools to uncover hidden patterns and test hypotheses ‎with precision. The results provide insights into risk-return trade-offs, optimal portfolio ‎allocations, and the impact of market volatility on returns. This methodology not only ensures ‎the robustness of the findings but also offers generalizability, making the results relevant for ‎investors, financial institutions, and policymakers aiming to improve decision-making in ‎dynamic market environments‎.

  • References

    1. Acerbi, C., Tasche, D., Expected shortfall: a natural coherent alternative value of risk, Journal of Economic Notes, 2002, 3(2), pp. 379-388. https://doi.org/10.1111/1468-0300.00091.
    2. Campana, E.F., Diez, M., Fasano. G., Peri, D., Improving the initial particles position and parameters selection for PSO in bound constrained opti-mization problems, Springer Lecture Notes in Computer Science, 2013, 7928, P. 112-119. https://doi.org/10.1007/978-3-642-38703-6_13.
    3. Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M., Heuristics for cardinality constrained portfolio optimization, Computers & Operations Re-search, 2000, 27(13), P. 1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X.
    4. Cong, F., Oosterlee, C.W., Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation, Journal of Economic Dynamics and Control, 2016, 64, P. 23-38. https://doi.org/10.1016/j.jedc.2016.01.001.
    5. DeMiguel, V., Mei, X., Nogales, F.J., Multiperiod portfolio optimization with multiple risky assets and general transaction costs, Journal of Banking & Finance, 2016, 69, P. 108-120. https://doi.org/10.1016/j.jbankfin.2016.04.002.
    6. Deng, G.F., Lin, W.T., Lo, C.C., Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization, Ex-pert Systems with Applications, 2012, 39(4), P. 4558-4566. https://doi.org/10.1016/j.eswa.2011.09.129.
    7. Gandomi, A.H., Alavi, A.H., Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simula-tion, 2012, 17(12), P. 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010.
    8. Ghodousi, S., Tehrani, R., Bashiri, M., Portfolio Optimization Using Simulated Annealing Method, Financial Research, 2012, 17(1), P. 142-158. Doi: 10.22059/jfr.2015.52036, (In Persian).
    9. Goldenberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, New York, Addison-Wesley Professional, 1989, https://doi.org/10.5860/CHOICE.27-0936.
    10. Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M., Competence_Driven Project Portfolio Selection, Scheduling and Staff Assign-ment, Central European Journal of Operations Research, 2008, 16(3), P. 281-306. https://doi.org/10.1007/s10100-008-0057-z.
    11. Guo, S., Yu, L., Li, X., Kar, S., Fuzzy multi-period portfolio selection with different investment horizons, European Journal of Operational Re-search, 2016, 254(3), P. 1026-1035. https://doi.org/10.1016/j.ejor.2016.04.055.
    12. Gupta, P., Mehlawat, M. K., Inuiguchi, M., Chandra, S., Fuzzy Portfolio Optimization, Springer-Verlag, Berlin, 2014. https://doi.org/10.1007/978-3-642-54652-5.
    13. Izadikhah, M., Saen, R.F., Roostaee, R., How to assess sustainability of suppliers in the presence of volume discount and negative data in data en-velopment analysis?, Annals of Operations Research, 2018, 269, P. 241–267, https://doi.org/10.1007/s10479-018-2790-6.
    14. Kandahari, M., Azar, A., Yazdanian, A., Gol Arazi, Gh., A Hybrid Model of Stochastic Dynamic Programming and Genetic Algorithm for Multi-stage Portfolio Optimization with GlueVaR Risk Measurement, Industrial Management, 2019, 11(3), P. 517-542.
    15. Karaboga, D., Akay, B., A comparative study of Artificial Bee Colony algorithm, Applied Mathematics and Computation, 2009, 214(1), P. 108-132. https://doi.org/10.1016/j.amc.2009.03.090.
    16. Kellerer, H., Mansini, R., Speranza, M.G., Selecting portfolios with fixed costs and minimum transaction lots, Annals of Operations Research, 2000, 99(1), P. 287-304. https://doi.org/10.1023/A:1019279918596.
    17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., Optimization by simulated annealing, Science, 1983, 220(4598), P. 671–680. https://doi.org/10.1126/science.220.4598.671.
    18. KUMAR, G., A.V.N., M., JEELAKARRA, S. R. K., GANAPATHY, S., G. R., S., & PADHY, S. (2025). Estimating the Factors Influencing Li-quidity Risk: Empirical Analysis of Indian Non-Banking Financial Institutions. Theoretical and Practical Research in Economic Fields, 16(2), 521. https://doi.org/10.14505/tpref.v16.2(34).20.
    19. Li, J., Xu, J., A novel portfolio selection model in a hybrid uncertain environment, Omega the International Journal of Management Science, 2009, 37(2). P. 439-449. https://doi.org/10.1016/j.omega.2007.06.002.
    20. Liu, Y.-J., Zhang, W.-G., Zhang, P., A multi-period portfolio selection optimization model by using interval analysis, Economic Modelling, 2013, 33, P. 113-119. https://doi.org/10.1016/j.econmod.2013.03.006.
    21. Liu, Y. J., Zhang, W. G., Xu, W. J., Fuzzy multi-period portfolio selection optimization models using multiple criteria, Automatica, 2012, 48(12), P. 3042-3053. https://doi.org/10.1016/j.automatica.2012.08.036.
    22. Liu, Y.-J., Zhang, W.-G., Zhang, Q., Credibilistic multi-period portfolio optimization model with bankruptcy control and affine recourse, Applied Soft Computing, 2016, 38, P. 890-906. https://doi.org/10.1016/j.asoc.2015.09.023.
    23. Liu, Y. J., Zhang, W. G., A multi-period fuzzy portfolio optimization model with minimum transaction lots, European Journal of Operational Re-search, 2015, 242(3), P. 933-941. https://doi.org/10.1016/j.ejor.2014.10.061.
    24. Markowitz, H.M., Portfolio selection", Journal of Finance, 1952, 7(1), P. 77-91. https://doi.org/10.2307/2975974.
    25. Mehlawat, M. K., Credibilistic mean-entropy models for multiperiod portfolio selection with multi-choice aspiration levels, Information Sciences, 2016, 345, P. 9-26. https://doi.org/10.1016/j.ins.2016.01.042.
    26. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., Equation of State Calculations by Fast Computing Machines, Journal of Chemical Physics, 1953, 21(6), P.1087–1092. https://doi.org/10.1063/1.1699114.
    27. Mohammadi, E., Mohammadi, E., Ramtin Nia, Sh., Portfolio Optimization by Using the Symbiotic Organisms Search, Financial Research, 2016, 18(2), P. 369-390.
    28. Najafi, A., Nopour, K., Ghahtarani, A., Portfolio interval optimization with conditional value at risk measure, Financial Research, 2017, 19(1), P. 157-172.
    29. Osman, I.H., Kelly, J.P., Meta-Heuristics: An Overview, Boston: Kluwer Academic Publishers, 1996, P. 1-21. https://doi.org/10.1007/978-1-4613-1361-8_1.
    30. Qu, B.Y., Suganthan. P.N., Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods, Engineering Op-timization, 2011, 43(4), P. 403-416. https://doi.org/10.1080/0305215X.2010.493937.
    31. Rockafeller, T., Uryasev, S., Conditional value-at-risk for general loss distributions, Journal of Banking and Finance, 2002, 26(7), P. 1443–1471. https://doi.org/10.1016/S0378-4266(02)00271-6.
    32. Rockafeller, T., Uryasev, S., Optimization of conditional value-at-risk, Journal of Risk, 2000, 2(3), P. 21-41. https://doi.org/10.21314/JOR.2000.038.
    33. Schaerf, A., Local search techniques for constrained portfolio selection problems, Computational Economics, 2002, 20(3), P. 177-190. https://doi.org/10.1023/A:1020920706534.
    34. Tehrani, R., Falah Tafti, S., Asefi, S., Portfolio Optimization Using Krill Herd Metaheuristic Algorithm Considering Different Measures of Risk in Tehran Stock Exchange, Financial Research, 2018, 20(4), P. 409-426.
    35. Tunchan, C., Particle swarm optimization approach to portfolio optimization, Nonlinear Analysis Real World Applications, 2009, 10(4), P. 2396-2406. https://doi.org/10.1016/j.nonrwa.2008.04.023.
    36. Vercher, E., Bermúdez, J. D., Portfolio optimization using a credibility mean-absolute semi-deviation model, Expert Systems with Applications, 2015, 42(20), P. 7121-7131. https://doi.org/10.1016/j.eswa.2015.05.020.
    37. Yao, H., Li, Z., Li, D., Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 2016, 252(3), P. 837-851. https://doi.org/10.1016/j.ejor.2016.01.049.
    38. Zhang, W. G., Liu, Y. J., Xu, W. J., A possibilistic mean-semivarianceentropy model for multi-period portfolio selection with transaction costs, Eu-ropean Journal of Operational Research, 2012, 222(2), P. 341-349. https://doi.org/10.1016/j.ejor.2012.04.023.
  • Downloads

  • How to Cite

    Deepika, V. V. . ., Murty, D. A. V. N. ., Kumar , G. ., Ganapathy , S. ., Raju , D. N. S. V. N. ., & Miyan , D. R. . (2025). Risk and Return Optimization Using Innovative Financial Modelling. International Journal of Basic and Applied Sciences, 14(7), 476-484. https://doi.org/10.14419/r3t5ts54