Fractional Dynamics and Fractal Geometry for Robust Fault Detection in Wireless Sensor Networks

  • Authors

    • Abdullah Shawan Alotaibi Department of Computer Science, College of Science and Humanities, Al Dawadmi, Shaqra University, Saudi Arabia
    https://doi.org/10.14419/aj2xxz30

    Received date: August 22, 2025

    Accepted date: September 26, 2025

    Published date: November 14, 2025

  • Wireless Sensor Networks; Fault Propagation Modelling; Multifractal Simulation; Memory-Aware Systems
  • Abstract

    A novel event detection framework for wireless sensor networks (WSNs) is presented, integrating fractional-order calculus and fractal ‎geometry to address fault tolerance and detection accuracy challenges. The methodology comprises five synergistic components: mul-‎multifractal event region simulation, fractional-order dynamic trust evaluation, Monte Carlo-based event estimation guided by fractional ‎information gain, fractional-order fault propagation modelling, and a multi-layer fractional consensus mechanism. These components ‎enable the system to adaptively assess node reliability, predict fault propagation, and detect spatially complex events with high precision. ‎The framework's simulation results demonstrate significant outperformance over conventional methods (binary decision trees, majority ‎voting, and Shannon-entropy-based detection), achieving 96.2% detection accuracy, a 1.8% false positive rate, a 0.982 area under the ‎curve, and a 28.4% reduction in data transmission overhead. These improvements highlight the practical potential of integrating fractional-‎al and fractal intelligence in the design of robust, memory-aware, and energy-efficient WSNs architectures suitable for harsh and dynamic-‎ic environments deployment‎.

  • References

    1. Adday, G.H. et al. (2023) ‘Friendship Degree and Tenth Man Strategy: A New Method for Differentiating Between Erroneous Readings and True Events in Wireless Sensor Networks’, IEEEA, 11, pp. 127651–127668. Available at: https://doi.org/10.1109/ACCESS.2023.3332476.
    2. Ali, M., Salah, B. and Habib, T. (2024) ‘Utilizing industry 4.0-related technologies and modern techniques for manufacturing customized products – Smart yogurt filling system’, Journal of Engineering Research, 12(3), pp. 468–475. Available at: https://doi.org/10.1016/j.jer.2023.100144.
    3. Aly, M ; et al. (2023) ‘Molecular Property Prediction of Modified Gedunin Using Machine Learning’, Molecules 2023, Vol. 28, Page 1125, 28(3), p. 1125. Available at: https://doi.org/10.3390/molecules28031125.
    4. Aly, M. and Alotaibi, N.S. (2022a) ‘A New Model to Detect COVID-19 Coughing and Breathing Sound Symptoms Classification from CQT and Mel Spectrogram Image Representation using Deep Learning’, International Journal of Advanced Computer Science and Applications, 13(8), pp. 601–611. Available at: https://doi.org/10.14569/IJACSA.2022.0130869.
    5. Aly, M. and Alotaibi, N.S. (2022b) ‘A novel deep learning model to detect COVID-19 based on wavelet features extracted from Mel-scale spectrogram of patients’ cough and breathing sounds’, Informatics in Medicine Unlocked, 32, p. 101049. Available at: https://doi.org/10.1016/j.imu.2022.101049.
    6. Bharti, S., Pattanaik, K.K. and Bellavista, P. (2021) ‘Value of information based sensor ranking for efficient sensor service allocation in service oriented wireless sensor networks’, IEEE Transactions on Emerging Topics in Computing, 9(2), pp. 823–838. Available at: https://doi.org/10.1109/TETC.2019.2891716.
    7. Bhat, S.J. and Santhosh, K. V. (2022) ‘A localization and deployment model for wireless sensor networks using arithmetic optimization algorithm’, Peer-to-Peer Networking and Applications, 15(3), pp. 1473–1485. Available at: https://doi.org/10.1007/s12083-022-01302-x.
    8. Biswas, P. and Samanta, T. (2020) ‘True Event-Driven and Fault-Tolerant Routing in Wireless Sensor Network’, Wireless Personal Communications, pp. 439–461. Available at: https://doi.org/10.1007/s11277-020-07037-3.
    9. Chen, K. et al. (2025) ‘Verifying Fault-Tolerance of Quantum Error Correction Codes’, pp. 3–27. Available at: https://doi.org/10.1007/978-3-031-98685-7_1.
    10. Fathi, I.S., El-Saeed, A.R., Hassan, G. and Aly, M. (2025) ‘Fractional Chebyshev transformation for improved binarization in the energy valley optimizer for feature selection’, Fractal and Fractional, 9(8), p. 521. Available at: https://doi.org/10.3390/fractalfract9080521
    11. Fathi, I.S., Ardah, H., Hassan, G. and Aly, M. (2025) ‘Protecting IoT networks through AI-based solutions and fractional Tchebichef moments’, Fractal and Fractional, 9(7), p. 427. Available at: https://doi.org/10.3390/fractalfract9070427.
    12. Chen, P.Y., Yang, S. and McCann, J.A. (2015) ‘Distributed real-time anomaly detection in networked industrial sensing systems’, IEEE Transactions on Industrial Electronics, 62(6), pp. 3832–3842. Available at: https://doi.org/10.1109/TIE.2014.2350451.
    13. Fathi, I.S. et al. (2025) ‘Protecting IOT Networks Through AI-Based Solutions and Fractional Tchebichef Moments’, Fractal and Fractional 2025, Vol. 9, Page 427, 9(7), p. 427. Available at: https://doi.org/10.3390/fractalfract9070427.
    14. Gowdhaman, V. and Dhanapal, R. (2024) ‘Hybrid deep learning-based intrusion detection system for wireless sensor network’, International Journal of Vehicle Information and Communication Systems, 9(3), pp. 239–255. Available at: https://doi.org/10.1504/IJVICS.2024.139627.
    15. Jesus, G., Casimiro, A. and Oliveira, A. (2021) ‘Using Machine Learning for Dependable Outlier Detection in Environmental Monitoring Systems’, ACM Transactions on Cyber-Physical Systems, 5(3); CSUBTYPE:STRING:JOURNAL;SERIALTOPIC:TOPIC:ACM-PUBTYPE>JOURNAL;PAGE:STRING:ARTICLE/CHAPTER. https://doi.org/10.1145/3445812.
    16. Aly, M. (2025) ‘Weakly-supervised thyroid ultrasound segmentation: Leveraging multi-scale consistency, contextual features, and bounding box supervision for accurate target delineation’, Computers in Biology and Medicine, 186, p. 109669. Available at: https://doi.org/10.1016/j.compbiomed.2025.109669.
    17. Krishnamachari, B. and Iyengar, S. (2004) ‘Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks’, IEEE Transactions on Computers, 53(3), pp. 241–250. Available at: https://doi.org/10.1109/TC.2004.1261832.
    18. Li, C. and Zhang, G. (2025) ‘An efficient and high-performance WSNs restoration algorithm for fault nodes based on FT in data aggregation scheduling’, International Journal of Cognitive Computing in Engineering, 6, pp. 508–515. Available at: https://doi.org/10.1016/j.ijcce.2025.05.001.
    19. Liu, Y. and Wu, Y. (2021) ‘Employ DBSCAN and Neighbor Voting to Screen Selective Forwarding Attack under Variable Environment in Event-Driven Wireless Sensor Networks’, IEEE Access, 9, pp. 77090–77105. Available at: https://doi.org/10.1109/ACCESS.2021.3083105.
    20. Liu, Z. et al. (2025) ‘K-Coverage Estimation for Irregular Targets in Wireless Visual Sensor Networks Deployed in Complex Region of Interest’, IEEE Sensors Journal, 25(10), pp. 18370–18383. Available at: https://doi.org/10.1109/JSEN.2025.3558041.
    21. Moridi, E. et al. (2020) ‘Novel fault-tolerant clustering-based multipath algorithm (FTCM) for wireless sensor networks’, Telecommunication Systems, 74(4), pp. 411–424. Available at: https://doi.org/10.1007/s11235-020-00663-z.
    22. Elsayed, E. and Aly, M. (2019) ‘Hybrid between ontology and quantum particle swarm optimization for segmenting noisy plant disease image’, International Journal of Intelligent Engineering and Systems, 12(5), pp. 299–311. Available at: https://doi.org/10.22266/ijies2019.1031.30
    23. Elsayed, E.K., Salem, D.R. and Aly, M. (2020) ‘A fast quantum particle swarm optimization algorithm for image denoising problem’, International Journal of Intelligent Engineering & Systems, 13(1), pp. 270–280. Available at: https://doi.org/10.22266/ijies2020.0229.24.
    24. Swain, R.R., Khilar, P.M. and Bhoi, S.K. (2020) ‘Underlying and Persistence Fault Diagnosis in Wireless Sensor Networks Using Majority Neighbors Co-ordination Approach’, Wireless Personal Communications, 111(2), pp. 763–798. Available at: https://doi.org/10.1007/s11277-019-06884-z.
    25. Vihman, L., Kruusmaa, M. and Raik, J. (2021) ‘Systematic Review of Fault Tolerant Techniques in Underwater Sensor Networks’, Sensors 2021, Vol. 21, Page 3264, 21(9), p. 3264. Available at: https://doi.org/10.3390/s21093264.
    26. Khan, R., Saeed, U. and Koo, I. (2024) ‘FedLSTM: A federated learning framework for sensor fault detection in wireless sensor networks’, Electronics, 13(24), p. 4907. Available at: https://doi.org/10.3390/electronics13244907.
    27. Gupta, B.B., Gaurav, A., Attar, R.W., Arya, V., Alhomoud, A. and Chui, K.T. (2024) ‘LSTM based neural network model for anomaly event detection in care-independent smart homes’, CMES – Computer Modeling in Engineering & Sciences, 140(3), pp. 1–15. Available at: https://doi.org/10.32604/cmes.2024.050825.
    28. Aly, M., Ghallab, A. and Fathi, I.S. (2024) ‘Tumor ViT-GRU-XAI: Advanced brain tumor diagnosis framework: Vision transformer and GRU integration for improved MRI analysis – A case study of Egypt’, IEEE Access, 12, pp. 184726–184754. Available at: https://doi.org/10.1109/ACCESS.2024.3513235.
    29. Khan, R., Saeed, U. and Koo, I. (2024) ‘FedLSTM: A federated learning framework for sensor fault detection in wireless sensor networks’, Electronics, 13(24), p. 4907. Available at: https://doi.org/10.3390/electronics13244907.
    30. Zhao, Z., Xiao, Z. and Tao, J. (2024) ‘MSDG: Multi-scale dynamic graph neural network for industrial time series anomaly detection’, Sensors, 24(22), p. 7218. Available at: https://doi.org/10.3390/s24227218
    31. Aly, M. and Alotaibi, A.S. (2023) ‘EMU-Net: Automatic brain tumor segmentation and classification using efficient modified U-Net’, Computers, Materials & Continua, 77(1), pp. 39–57. Available at: https://doi.org/10.32604/cmc.2023.042493.
    32. Gowdhaman, V., & Dhanapal, R. (2024). Hybrid deep learning-based intrusion detection system for wireless sensor network. International Journal of Vehicle Information and Communication Systems, 9(3), 239-255.‏ https://doi.org/10.1504/IJVICS.2024.139627.
  • Downloads

  • How to Cite

    Alotaibi, A. S. . . (2025). Fractional Dynamics and Fractal Geometry for Robust Fault Detection in Wireless Sensor Networks. International Journal of Basic and Applied Sciences, 14(7), 372-387. https://doi.org/10.14419/aj2xxz30