An Efficient Hybrid Model for Healthcare System to DetectDisease Using Machine Learning Techniques
-
https://doi.org/10.14419/mq9yvg65
Received date: August 25, 2025
Accepted date: November 4, 2025
Published date: December 12, 2025
-
Healthcare; Machine Learning; Personalized Medicine; Predictive Analytics; Prognosis and Disease Prediction -
Abstract
Over the past decade, the huge demand for personalized and proactive healthcare has led to the integration of advanced technologies such as wearable devices, IoT and AI into modern healthcare. The project proposes the design of a smart health care system specifically for elderly people and disabled persons, which continuously monitors their health and provides early disease prediction. It proposes integrating a system of patient medical records with real-time physiological data collected by multiple IoT-based wearable devices, while ensuring reliable and timely assistance. IoT-based networks work on standardized communication protocols to promote and manage data efficiency. In addition, it uses sophisticated machine learning algorithms to evaluate collected data, identify potential health risks and support clinical decision-making with utmost accuracy and precision. It enhances the overall effectiveness and scalability of healthcare service in addition to improving early treatment outcomes. Thus, by addressing issues of heterogeneity, missing values, and interpretability, this proposed strategy advances the creation of an inclusive healthcare system.
-
References
- World Health Organization. (2021). Decade of healthy ageing 2020–2030. https://www.who.int/initiatives/decade-of-healthy-ageing
- An, Q., Rahman, S., Zhou, J., & Kang, J. J. (2023). A comprehensive review on machine learning in healthcare industry: Classification, restrictions, opportunities and challenges. Sensors, 23(9), 4178. https://doi.org/10.3390/s23094178.
- Iyortsuun, N. K., Kim, S.-H., Jhon, M., Yang, H.-J., & Pant, S. (2023). A review of machine learning and deep learning approaches on mental health diagnosis. Healthcare, 11(3), 285. https://doi.org/10.3390/healthcare11030285.
- Preti, L. M., Ardito, V., Compagni, A., Petracca, F., & Cappellaro, G. (2024). Implementation of machine learning applications in health care organ-izations: Systematic review of empirical studies. Journal of Medical Internet Research, 26, e55897. https://doi.org/10.2196/55897.
- Jeyaraman, N., Jeyaraman, M., Yadav, S., Ramasubramanian, S., Balaji, S., Muthu, S., Lekha, P. C., & Patro, B. P. (2024). Applications of fog computing in healthcare. Cureus. https://doi.org/10.7759/cureus.64263.
- Mir, A. A., Khalid, A. S., Musa, S., Ahmad Fauzi, M. F., Abdul Razak, N. N., & Tang, T. B. (2025). Machine learning in ambient assisted living for enhanced elderly healthcare: A systematic literature review. IEEE Access, 13, 110508–110527. https://doi.org/10.1109/ACCESS.2025.3580961.
- Cheema, B., Hourmozdi, J., Kline, A., Ahmad, F., & Khera, R. (2025). Artificial intelligence in the management of heart failure. Journal of Cardiac Failure. https://doi.org/10.1016/j.cardfail.2025.02.020.
- Hummelsberger, P., Koch, T. K., Rauh, S., Dorn, J., Lermer, E., Raue, M., ... & Gaube, S. (2023). Insights on the current state and future outlook of AI in health care: Expert interview study. JMIR AI, 2, e47353. https://doi.org/10.2196/47353.
- Poddar, M., Marwaha, J. S., Yuan, W., et al. (2024). An operational guide to translational clinical machine learning in academic medical centers. NPJ Digital Medicine, 7, 129. https://doi.org/10.1038/s41746-024-01094-9.
- Schmidt, J., Schutte, N. M., Buttigieg, S., et al. (2024). Mapping the regulatory landscape for artificial intelligence in health within the European Union. NPJ Digital Medicine, 7, 229. https://doi.org/10.1038/s41746-024-01221-6.
- Liu, G. S., Fereydooni, S., Lee, M. C., et al. (2025). Scoping review of deep learning research illuminates artificial intelligence chasm in otolaryn-gology-head and neck surgery. NPJ Digital Medicine, 8, 265. https://doi.org/10.1038/s41746-025-01693-0.
- Rehman, M. U., Naseem, S., Butt, A., et al. (2025). Predicting coronary heart disease with advanced machine learning classifiers for improved car-diovascular risk assessment. Scientific Reports, 15, 13361. https://doi.org/10.1038/s41598-025-96437-1.
- Li, X., Shang, C., Xu, C., et al. (2023). Development and comparison of machine learning-based models for predicting heart failure after acute my-ocardial infarction. BMC Medical Informatics and Decision Making, 23, 165. https://doi.org/10.1186/s12911-023-02240-1.
- Sarraf, S., & Tofighi, G. (2016). Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data. Future Generation Computer Sys-tems, 106, 526–535. https://doi.org/10.1016/j.future.2016.10.021.
- Gupta, R. S., Wood, C. E., Engstrom, T., et al. (2025). A systematic review of quantum machine learning for digital health. NPJ Digital Medicine, 8, 237. https://doi.org/10.1038/s41746-025-01597-z.
- Garg, R. (2025). Smart aging: Harnessing artificial intelligence to enhance elderly health care and independence. Journal of the Indian Academy of Geriatrics, 21(2), 143–146. https://doi.org/10.4103/jiag.jiag_67_24.
- López, L. J. L., Elsharief, S., Jorf, D. A., Darwish, F., Ma, C., & Shamout, F. E. (2025). Uncertainty quantification for machine learning in healthcare: A survey (Version 1). arXiv.
- Chustecki, M. (2024). Benefits and risks of AI in health care: Narrative review. Interactive Journal of Medical Research, 13, e53616. https://doi.org/10.2196/53616.
- Ashfaq, M. T., Javaid, N., Alrajeh, N., & Ali, S. S. (2025). An explainable AI–based deep learning solution for efficient heart disease prediction at early stages. Evolving Systems, 16, 33. https://doi.org/10.1007/s12530-025-09664-2.
- Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F., ... & Goldenberg, A. (2019). Do no harm: A roadmap for responsible machine learning for health care. Nature Medicine, 25(9), 1337–1340. https://doi.org/10.1038/s41591-019-0548-6.
- Taha, K. (2025). Machine learning in biomedical and health big data: A comprehensive survey with empirical and experimental insights. Journal of Big Data, 12, 61. https://doi.org/10.1186/s40537-025-01108-7.
- Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225. https://arxiv.org/abs/1711.05225.
- Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., ... & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digital Medicine, 3, 119. https://doi.org/10.1038/s41746-020-00323-1.
- Noeyislearning. (n.d.). Framingham heart study [Data set]. Kaggle. https://www.kaggle.com/datasets/noeyislearning/framingham-heart-study
- Habibzadeh, H., Dinesh, K., Shishvan, O. R., Boggio-Dandry, A., Sharma, G., & Soyata, T. (2019). A survey of healthcare Internet-of-Things (HI-oT): A clinical perspective. IEEE Internet of Things Journal, 6(6), 1–1. https://doi.org/10.1109/JIOT.2019.2946359.
- Teo, Z. L., Jin, L., Li, S., Miao, D., Zhang, X., Ng, W. Y., ... & Ting, D. S. W. (2024). Federated machine learning in healthcare: A systematic re-view on clinical applications and technical architecture. Cell Reports Medicine, 5(2), 101419. https://doi.org/10.1016/j.xcrm.2024.101419.
- Kline, A., Wang, H., Li, Y., Dennis, S., Hutch, M., Xu, Z., ... & Luo, Y. (2022). Multimodal machine learning in precision health: A scoping re-view. NPJ Digital Medicine, 5, 171. https://doi.org/10.1038/s41746-022-00712-8.
- Bienefeld, N., Boss, J. M., Lüthy, R., Brodbeck, D., Azzati, J., Blaser, M., ... & Keller, E. (2023). Solving the explainable AI conundrum by bridg-ing clinicians’ needs and developers’ goals. NPJ Digital Medicine, 6, 94. https://doi.org/10.1038/s41746-023-00837-4.
- Alkhanbouli, R., Almadhaani, H. M. A., Alhosani, F., Simsekler, M. C. E., et al. (2025). The role of explainable artificial intelligence in disease pre-diction: A systematic literature review and future research directions. BMC Medical Informatics and Decision Making, 25, 110. https://doi.org/10.1186/s12911-025-02944-6.
- Teoh, J. R., Dong, J., Zuo, X., Lai, K. W., Hasikin, K., & Wu, X. (2024). Advancing healthcare through multimodal data fusion: A comprehensive review of techniques and applications. PeerJ Computer Science, 10, e2298. https://doi.org/10.7717/peerj-cs.2298.
- Acosta, J. N., Falcone, G. J., Rajpurkar, P., & Topol, E. J. (2022). Multimodal biomedical AI. Nature Medicine, 28, 1773–1784. https://doi.org/10.1038/s41591-022-01981-2.
- Baltrušaitis, T., Ahuja, C., & Morency, L. P. (2019). Multimodal machine learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443. https://doi.org/10.1109/TPAMI.2018.2798607.
- Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. K., & Mahmood, F. (2022). Multimodal deep learning in healthcare: A review, taxonomy, and future directions. NPJ Digital Medicine, 5, 1–24. https://doi.org/10.1038/s41746-022-00665-y.
- Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
- Lee, J., Yoon, W., & Kim, J. (2020). Cross-institutional validation of deep learning models in healthcare: Challenges and strategies. Journal of Bio-medical Informatics, 109, 103519. https://doi.org/10.1016/j.jbi.2020.103519.
- Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intel-ligence. BMC Medicine, 17(1), 1–9. https://doi.org/10.1186/s12916-019-1426-2.
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artifi-cial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953.
- Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intel-ligence. BMC Medicine, 17(1), 1–9. https://doi.org/10.1186/s12916-019-1426-2.
- Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. K., & Mahmood, F. (2022). Multimodal deep learning in healthcare: A review, taxonomy, and future directions. NPJ Digital Medicine, 5(1), 1–24. https://doi.org/10.1038/s41746-022-00665-y.
- Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60. https://doi.org/10.1109/MSP.2020.2975749.
- Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3287560.
- Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689.
-
Downloads
-
How to Cite
Mavai, A. S., Mishra, D. K. ., & Sharma, A. K. (2025). An Efficient Hybrid Model for Healthcare System to DetectDisease Using Machine Learning Techniques. International Journal of Basic and Applied Sciences, 14(8), 240-250. https://doi.org/10.14419/mq9yvg65
