Heavy Metals and PAHs in Mollusks from The Sangomar Marine Protected Area in ‎Senegal: A Baseline Study

  • Authors

    • Issa BA Laboratoire d’Océanographie, des Sciences de l’Environnement et du Climat (LOSEC), ‎Université Assane seck de Ziguinchor (UASZ), Ziguinchor, Sénégal.; BP 523
    • Ousmane Diankha Département Hydrosciences et environnement, UFR Sciences et Technologies, Université Iba ‎ Der Thiam, Thiès, Sénégal
    • Bamol Ali Sow Laboratoire d’Océanographie, des Sciences de l’Environnement et du Climat (LOSEC), ‎Université Assane seck de Ziguinchor (UASZ), Ziguinchor, Sénégal.; BP 523
    https://doi.org/10.14419/zk9a3751

    Received date: August 19, 2025

    Accepted date: October 1, 2025

    Published date: October 20, 2025

  • Health Risk Assessment; Heavy Metals; PAHs; Crassostrea Gasar; Sangomar MPA; Senegal; ‎Senilia Senilis
  • Abstract

    This study provides the first baseline evaluation of heavy metals (Pb, Cd, Hg) and polycyclic ‎aromatic hydrocarbons (PAHs) in the bivalves Senilia senilis and Crassostrea gasar from the ‎Sangomar Marine Protected Area (Senegal), prior to offshore oil exploitation. Sampling was ‎conducted during the dry and rainy seasons of 2023-2024. Plomb and Hg concentrations ‎remained well below international safety limits, whereas Cd frequently exceeded the ‎permissible threshold, reaching 2.36 mg/kg dry weight in S. senilis. PAH contamination, ‎dominated by pyrogenic four-ring compounds (fluoranthene, pyrene), peaked in S. senilis ‎during the rainy season (190 µg/kg). Health risk assessment indicated that target hazard ‎quotients for Cd approached the critical value of 1 in S. senilis, suggesting possible long-term ‎risks to consumers. These results reveal high Cd exposure and seasonal PAH inputs likely ‎linked to runoff, providing essential reference data for environmental monitoring and ‎informing adaptive management strategies in the face of industrial expansion‎.

  • References

    1. Aamir, M., Khan, S., Tang, M., et al. (2017). Congener-specific evaluation of biota-sediment accumulation factor model for HCHs and DDTs under small-scale in situ riverine condition. Journal of Soils and Sediments, 17, 525–535. https://doi.org/10.1007/s11368-016-1579-y.
    2. Agence Nationale de la Statistique et de la Démographie (ANSD). (2017/2018). Situation économique et sociale du Sénégal : Pêche et aquaculture.
    3. Aranguren, M. M. (2008). Contamination en métaux lourds des eaux de surface et des sédiments du Val de Mulluni (Andes boliviennes) par des déchets miniers : Approche géochimique, minéralogique et hydrochimique (Thèse de doctorat). Université Paul Sabatier — Toulouse III.
    4. Badji, Y., Diankha, O., & Sow, B. A. (2025). Study of heavy metal contamination of Sarotherodon melanotheron and Crassostrea gasar in Casamance River (Senegal). https://doi.org/10.4314/ijbcs.v19i1.4.
    5. Ba, I., Diankha, O., Ali Sow, B., and Ba, S. (2025). Assessment of Sediment Quality in the Sangomar Marine Protected Area in Senegal Prior to Oil Development. Open Journal of Marine Science, 15, 157-172. https://doi.org/10.4236/ojms.2025.153009.
    6. Ba, I., Diankha, O., Sow, B. A., & Ba, S. (2025). Assessment of physicochemical water quality in the Sangomar marine protected area before oil exploitation of the Sangomar offshore field, Senegal. African Journal of Environmental Science and Technology, 19(6), 180–190. https://doi.org/10.5897/AJEST2025.3341.
    7. Bai, Y., Shi, K., Yu, H., Shang, N., Hao, W., Wang, C., Huang, T., Yang, H., Huang, C. (2022). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Lake Dagze Co, Tibetan Plateau, China: Comparison of three receptor models, Journal of Environmental Sciences, 121, 224-233. https://doi.org/10.1016/j.jes.2022.01.043.
    8. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193. https://doi.org/10.1890/10-1510.1.
    9. Ben Salem, F., et al. (2021). Southern Mediterranean coast pollution: Long-term assessment and evolution of PAH pollutants in Monastir Bay (Tunisia). Environmental Pollution, 286, 117502.
    10. Blackmore, G. (2001). Interspecific variation in heavy metal body concentrations in Hong Kong marine invertebrates. Environmental Pollution, 114(3), 303–311. Cambridge University Press & Assessment. https://doi.org/10.1016/S0269-7491(01)00086-0.
    11. Chalghmi, H., Bourdineaud, J.-P., Haouas, Z., et al. (2015). Transcriptomic, biochemical, and histopathological responses of the clam Ruditapes decussatus from a metal-contaminated Tunis lagoon. Archives of Environmental Contamination and Toxicology, 70(2), 241‒256. https://doi.org/10.1007/s00244-015-0185-0.
    12. Diankha, O., Ndiaye, T., Agbogba, C., & Sarr, A. (2020). Détermination des teneurs en mercure (Hg) total chez la moule Perna perna et l’oursin Echinometra lucunter de la baie de Soumbédioune (Région de Dakar, Sénégal) et évaluation des risques sanitaires. European Scientific Journal, 16, 15–26. https://doi.org/10.19044/esj.2020.v16n9p15.
    13. Diop, C., Diatta, A., Ndiaye, A., Cabral, M., Touré, A., & Fall, M. (2019). Teneurs en métaux traces des eaux et poissons de cinq étangs de Dakar et risques pour la santé humaine. Journal of Applied Biosciences, 137, 13931–13939. https://doi.org/10.4314/jab.v137i1.1.
    14. Diop, M., Net, S., Howsman, M., Lencel, P., Watier, D., Grard, T., Duflos, G., & Amara, R. (2017). Concentration and potential human health risks for regulated metals (Cd, Pb, Hg) and organic pollutants (PAHs, PCBs) in fish and seafood from the Senegalese coast. International Journal of Environmental Research, 11, 349–358. https://doi.org/10.1007/s41742-017-0032-4.
    15. European Commission. (2015). Commission Regulation (EU) 2015/1005 of 25 June 2015 amending Regulation No 1881/2006 as regards maximum levels of lead in certain foodstuffs. Official Journal of the European Union, L161/9. http://data.europa.eu/eli/reg/2015/1005/oj
    16. Fakayode, S. O. (2005). Impact assessment of industrial effluent on water quality of the receiving Alora River in Ibadan, Nigeria. African Journal of Environmental Assessment and Management, 10, 1–13.
    17. Förstner, U. (1981). Metal transfer between solid and aqueous phases. In U. Förstner & G. T. W. Wittmann (Eds.), Metal pollution in the aquatic environment (pp. 197–270). Springer. https://doi.org/10.1007/978-3-642-69385-4_5.
    18. Giarratano, E., Duarte, C. A., Amin, O. A., & Comoglio, L. I. (2011). Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina). Marine Pollution Bulletin, 62(8), 1895–1904. https://doi.org/10.1016/j.marpolbul.2011.05.031.
    19. Góngora-Gómez, A. M., García-Ulloa, M., Muñoz-Sevilla, N. P., Domínguez-Orozco, A. L., Villanueva-Fonseca, B. P., Hernández-Sepúlveda, J. A., & Ortega Izaguirre, R. (2017). Heavy-metal contents in oysters (Crassostrea gigas) cultivated on the southeastern coast of the Gulf of California, Mexico. Hidrobiológica, 27(2), 219–227. https://doi.org/10.24275/uam/izt/dcbs/hidro/2017v27n2/Garcia.
    20. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 92). Lyon, France: International Agency for Research on Cancer.
    21. Ihunwo, O. C., Ibezim-Ezeani, M. U., Wekpe, V. O., Shahabinia, A. R., Bonnail, E., Mmom, P. C., & Horsfall, M. (2022). Risk assessment of human exposure to lead and cadmium in tissues of Blackchin Tilapia (Sarotherodon melanotheron) from an intertidal creek in the Niger Delta region of Nigeria. Environmental Research Communications, 4(7), 075007. https://doi.org/10.1088/2515-7620/ac7f14.
    22. Kantati, Y. T., Kodjo, M. K., Gnandi, K., Ketoh, G. K., & Gbeassor, M. (2013). Effects of pollution on oxidative stress in aquatic species: Case of the fish Sarotherodon melanotheron in Bè Lagoon (Lomé). International Journal of Biological and Chemical Sciences, 7(2), 717–725. https://doi.org/10.4314/ijbcs.v7i2.26.
    23. Katsoyiannis A, Terzi E, Cai QY. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69(8):1337-9. https://doi.org/10.1016/j.chemosphere.2007.05.084.
    24. Khedir-Ghenim, Z., Zrafi-Nouira, I., Bahri, R., Belayouni, H., Hammami, M., Rouabhia, M., & Saidane-Mosbahi, D. (2009). Identification and distribution of petroleum hydrocarbons in sediments, seawater and Ruditapes decussatus collected from a Mediterranean Sea site. International Journal of Water, 5(1), 35–50. https://doi.org/10.1504/IJW.2009.023081.
    25. Ma, W-L., Liu, L-Y., Jia, H-L., Yang, M., Li, Y-F. (2028). PAHs in Chinese atmosphere Part I: Concentration, source and temperature dependence, Atmospheric Environment, Volume 173, 330-337. https://doi.org/10.1016/j.atmosenv.2017.11.029.
    26. Matozzo, V., & Marin, M. G. (2010). First evidence of gender-related differences in immune parameters of the clam Ruditapes philippinarum (Mollusca, Bivalvia). Marine Biology, 157(6), 1181–1189. https://doi.org/10.1007/s00227-010-1398-4.
    27. Mehrzad Keshavarzifard, Mohamad Pauzi Zakaria & Shahin Keshavarzifard (2016). Evaluation of Polycyclic Aromatic Hydrocarbons Contamination in the Sediments of the Johor Strait, Peninsular Malaysia, Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2016.1257997.
    28. Neff, J. M. (1979). Polycyclic Aromatic Hydrocarbons in the Aquatic Environment: Sources, Fates and Biological Effects. London: Applied Science Publishers, 262 p.
    29. Ogindo, B. A. (2001). Heavy metal pollutants and their concentrations in fish (Barbus species) in Sosiani River, Kenya. Discovery and Innovation, 13(3). https://doi.org/10.4314/dai.v13i3.15611.
    30. Pan, K., & Wang, W.-X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421–422, 3–16. https://doi.org/10.1016/j.scitotenv.2011.03.013.
    31. Pesch, B., et al. (2000). Facteurs de risque professionnels du carcinome à cellules rénales : résultats spécifiques à l’agent d’une étude cas-témoins en Allemagne. International Journal of Epidemiology, 29, 1014–1024.
    32. Perugini, M., Visciano, P., Manera, M., Turno, G., Lucisano, A., & Amorena, M. (2007). Polycyclic aromatic hydrocarbons in marine organisms from the Gulf of Naples, Tyrrhenian Sea. Journal of Agricultural and Food Chemistry, 55(5), 2049–2054. https://doi.org/10.1021/jf0630926.
    33. Plan d’aménagement et de gestion des aires marines protégées. (2017). Ministère de l’Environnement et du Développement durable, Sénégal.
    34. Pule, B.O., Mmualefe, L.C., Torto, N. (2012). Analysis of polycyclic aromatic hydrocarbons in soil with Agilent bond elut HPLC-FLD. Agilent application note 5990–5452 EN.
    35. Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what?Environmental Pollution, 120(3), 497–507. https://doi.org/10.1016/S0269-7491(02)00238-5.
    36. Saha, A., Zhang, Y., Smith, C. L., Grill, S. W., Mihardja, S., Smith, S. B., Cairns, B. R., Peterson, C. L., & Bustamante, C. (2006). DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Molecular Cell, 24(4), 559–568. https://doi.org/10.1016/j.molcel.2006.10.025.
    37. Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025.
    38. United States Environmental Protection Agency (USEPA). (2000). Guidance for assessing chemical contaminant data for use in fish advisories: Fish sampling and analysis (3rd ed.). EPA 823-R-95-007.
    39. Waalkes, M. P. (2000). Carcinogenèse du cadmium en revue. Journal of Inorganic Biochemistry, 79, 241–244. https://doi.org/10.1016/S0162-0134(00)00009-X.
    40. Wang, W.-X., & Rainbow, P. S. (2008). Comparative approaches to understand metal bioaccumulation in aquatic animals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148(4), 315–323. https://doi.org/10.1016/j.cbpc.2008.04.003.
    41. Widdows, J., & Brinsley, M. (2002). Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. Journal of Sea Research, 48(2), 143–156. https://doi.org/10.1016/S1385-1101(02)00148-X.
    42. Yap, C. K., Wong, K. W., Al-Shami, S. A., Nulit, R., Cheng, W. H., Aris, A. Z., Sharifinia, M., Bakhtiari, A. R., Okamura, H., Saleem, M., Chew, W., Ismail, M. S., & Al-Mutairi, K. A. (2021). Human health risk assessments of trace metals on the clam Corbicula javanica in a tropical river in Peninsular Malaysia. International Journal of Environmental Research and Public Health, 18(1), 195. https://doi.org/10.3390/ijerph18010195.
    43. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5.
    44. Zhang, Y., Tao, S., Wang, W., Li, B., & Wang, L. (2005). Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach. Environmental Science & Technology, 39(23), 9109–9114. https://doi.org/10.1021/es0513741.
    45. Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., Wang, X. (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environmental Pollution, 153(3), 594–601. https://doi.org/10.1016/j.envpol.2007.09.004.
  • Downloads

  • How to Cite

    BA, I., Diankha, O., & Sow, B. A. (2025). Heavy Metals and PAHs in Mollusks from The Sangomar Marine Protected Area in ‎Senegal: A Baseline Study. International Journal of Basic and Applied Sciences, 14(6), 444-452. https://doi.org/10.14419/zk9a3751