A Cybersecurity Threat Detection Using Advanced Neural Network Methodologies
-
https://doi.org/10.14419/kk1qt007
Received date: July 31, 2025
Accepted date: September 13, 2025
Published date: October 4, 2025
-
Cyber threat detection, Backpropagation Neural Network (BPNN), Crested Porcupine Optimization Algorithm (CPOA), Harbor Seal Whiskers Optimiza-tion Algorithm (HSWOA), Tanh-estimator normalization. -
Abstract
As the sophistication of cybersecurity threats continues to rise, colleges and universities are increasingly faced with threats to their digital assets. Traditional approaches to forecasting cybersecurity threats tend to fall short in accurately classifying specific threats, processing ultra-high-dimensional data, and responding suitably to patterns of attacks. To address these challenges, this study introduces a novel prediction model: BPNN-CPOA-CSP-UAC. The model incorporates a Backpropagation Neural Network (BPNN), a heavily used model that can learn complexities in data. To address parameter tuning deficiencies, the model employs the Crested Porcupine Optimization Algorithm (CPOA) to discover the best weights and biases for the neural network, significantly enhancing learning performance and predictive accuracy. Further performance improvements are achieved using the Harbor Seal Whiskers Optimization Algorithm (HSWOA) for feature selection. This eliminates duplicate information by choosing the most descriptive features and eliminating irrelevant information, thus improving the model's accuracy. Tanh-estimator normalization is also used during pre-processing to scale input features and thus ensure high-quality data during training. The model was trained and tested using two benchmark intrusion detection datasets, CIC-IDS-2017 and UNSW-NB15. Performance on testing is remarkable with precision and accuracy both at 99.99%, recall, and F1-score at 99.98%. The model also yielded a minimum false positive ratio of 0.0175%, a false negative ratio of 0.0165%, and a quick execution time of 90.5 milliseconds. These results suggest BPNN-CPOA-CSP-UAC as a practical and efficient academic institution cybersecurity threat prediction model. Since it can predict threats quickly and effectively, it is a strong defense tool against emerging cyber threats in educational institutions.
-
References
- I.F. Kilincer, F. Ertam, A. Sengur, “A comprehensive intrusion detection framework using boosting algorithms”, Computers and Electrical Engi-neering, Vol. 100, No.1, pp.107869, 2022, doi: 10.1016/j.compeleceng.2022.107869.
- E.E. Abdallah, A.F. Otoom, “Intrusion detection systems using supervised machine learning techniques: a survey”, Procedia Computer Science, Vol.201, No.1, pp.205–212, 2022, doi: 10.1016/j.procs.2022.02.025.
- A. Khanan, Y.A. Mohamed, A.H. Mohamed, M. Bashir, “From Bytes to Insights: A Systematic Literature Review on Unraveling IDS Datasets for Enhanced Cybersecurity Understanding”, IEEE Access, Vol.. 12, No.1, pp.1–20,2024, doi: 10.1109/ACCESS.2024.3374469.
- A. Thakkar, R. Lohiya, “Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System”, Infor-mation Fusion, Vol.90, No.1, pp.353–363, 2023, doi: 10.1016/j.inffus.2022.09.004.
- T. Al-Shehari, M. Kadrie, T. Alfakih, H. Alsalman, T. Kuntavai, et al., “Blockchain with secure data transactions and energy trading model over the internet of electric vehicles,” Sci. Rep., vol. 14, no. 1, p. 19208, 2024, doi: 10.1038/s41598-024-56894-w.
- P. Selvam, N. Krishnamoorthy, S. P. Kumar, K. Lokeshwaran, M. Lokesh, et al., “Internet of Things Integrated Deep Learning Algorithms Moni-toring and Predicting Abnormalities in Agriculture Land,” Internet Technol. Letters, 2024, doi: /10.1002/itl2.607.
- B. Ramesh, V. V. Kulkarni, Ashwini Shinde, Dinesh Kumar J. R, Prasanthi,et al.,” Optimizing EV Energy Management Using Monarch Butterfly and Quantum Genetic Algorithms,” International Journal of Basic and Applied Sciences” vol.14, no.2, pp. 311-318, 2025, doi: 10.14419/xaqk1294
- K. Maithili, A. Kumar, D. Nagaraju, D. Anuradha, S. Kumar, et al., “DKCNN: Improving deep kernel convolutional neural network-based covid-19 identification from CT images of the chest,” J. X-ray Sci. Technol., vol. 32, no. 4, pp. 913–930, 2024, doi: 10.3233/XST-230424.
- T. A. Mohanaprakash, M. Kulandaivel, S. Rosaline, P. N. Reddy, S. S. N. Bhukya, et al., “Detection of Brain Cancer through Enhanced Particle Swarm Optimization in Artificial Intelligence Approach,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 33, no. 3, pp. 174–186, 2023, doi: 10.37934/araset.33.2.174186.
- Wange N. K., Khan I., Pinnamaneni R., Cheekati H., Prasad J., et al., “β-amyloid deposition-based research on neurodegenerative disease and their relationship in elucidate the clear molecular mechanism,” Multidisciplinary Science Journal, vol. 6, no. 4, pp. 2024045–2024045, 2024, doi: 10.31893/multiscience.2024045.
- Anitha C., Tellur A., Rao K. B. V. B., Kumbhar V., Gopi T., et al., “Enhancing Cyber-Physical Systems Dependability through Integrated CPS-IoT Monitoring,” International Research Journal of Multidisciplinary Scope, vol. 5, no. 2, pp. 706–713, 2024. 10.47857/irjms.2024.v05i02.0620.
- Balasubramani R., Dhandapani S., Sri Harsha S., Mohammed Rahim N., Ashwin N., et al., “Recent Advancement in Prediction and Analyzation of Brain Tumour using the Artificial Intelligence Method,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 33, no. 2, pp. 138–150, 2023, doi: 10.37934/araset.33.2.138150.
- Chaturvedi A., Balasankar V., Shrimali M., Sandeep K. V., et al., “Internet of Things Driven Automated Production Systems using Machine Learn-ing,” International Research Journal of Multidisciplinary Scope, vol. 5, no. 3, pp. 642–651, 2024, doi: 10.47857/irjms.2024.v05i03.01033.
- Saravanakumar R., Arularasan A. N., Harekal D., Kumar R. P., Kaliyamoorthi P., et al., “Advancing Smart Cyber Physical System with Self-Adaptive Software,” International Research Journal of Multidisciplinary Scope, vol. 5, no. 3, pp. 571–582, 2024, doi: 10.47857/irjms.2024.v05i03.01013.
- Vidhya R. G., Surendiran J., Saritha G., “Machine Learning Based Approach to Predict the Position of Robot and its Application,” Proc. Int. Conf. on Computer Power and Communications, pp. 506–511, 2022, doi: 10.1109/ICCPC55978.2022.10072031.
- Sivanagireddy K., Yerram S., Kowsalya S. S. N., Sivasankari S. S., Surendiran J., et al., “Early Lung Cancer Prediction using Correlation and Re-gression,” Proc. Int. Conf. on Computer Power and Communications, pp. 24–28, 2022, doi: 10.1109/ICCPC55978.2022.10072059.
- Vidhya R. G., Seetha J., Ramadass S., Dilipkumar S., Sundaram A., Saritha G., “An Efficient Algorithm to Classify the Mitotic Cell using Ant Colony Algorithm,” Proc. Int. Conf. on Computer Power and Communications, pp. 512–517, 2022, doi: 10.1109/ICCPC55978.2022.10072277.
- Sengeni D., Muthuraman A., Vurukonda N., Priyanka G., et al., “A Switching Event-Triggered Approach to Proportional Integral Synchronization Control for Complex Dynamical Networks,” Proc. Int. Conf. on Edge Computing and Applications, pp. 891–894, 2022, doi: 10.1109/ICECAA55415.2022.9936124.
- Vidhya R. G., Rani B. K., Singh K., Kalpanadevi D., Patra J. P., Srinivas T. A. S., “An Effective Evaluation of SONARS using Arduino and Dis-play on Processing IDE,” Proc. Int. Conf. on Computer Power and Communications, pp. 500–505, 2022, doi: 10.1109/ICCPC55978.2022.10072229.
- Kushwaha S., Boga J., Rao B. S. S., Taqui S. N., et al., “Machine Learning Method for the Diagnosis of Retinal Diseases using Convolutional Neu-ral Network,” Proc. Int. Conf. on Data Science, Agents & Artificial Intelligence, 2023, doi: 10.1109/ICDSAAI59313.2023.10452440.
- Maheswari B. U., Kirubakaran S., Saravanan P., Jeyalaxmi M., Ramesh A., et al., “Implementation and Prediction of Accurate Data Forecasting Detection with Different Approaches,” Proc. 4th Int. Conf. on Smart Electronics and Communication, pp. 891–897, 2023, doi: 10.1109/ICOSEC58147.2023.10276331.
- Mayuranathan M., Akilandasowmya G., Jayaram B., Velrani K. S., Kumar M., et al., “Artificial Intelligent based Models for Event Extraction us-ing Customer Support Applications,” Proc. 2nd Int. Conf. on Augmented Intelligence and Sustainable Systems, pp. 167–172, 2023, doi: 10.1109/ICAISS58487.2023.10250679.
- Gold J., Maheswari K., Reddy P. N., Rajan T. S., Kumar S. S., et al., “An Optimized Centric Method to Analyze the Seeds with Five Stages Tech-nique to Enhance the Quality,” Proc. Int. Conf. on Augmented Intelligence and Sustainable Systems, pp. 837–842, 2023, doi: 10.1109/ICAISS58487.2023.10250681.
- Anand L., Maurya J. M., Seetha D., Nagaraju D., et al., “An Intelligent Approach to Segment the Liver Cancer using Machine Learning Method,” Proc. 4th Int. Conf. on Electronics and Sustainable Communication Systems, pp. 1488–1493, 2023, doi: 10.1109/ICESC57686.2023.10193190.
- Harish Babu B., Indradeep Kumar, et al., “Advanced Electric Propulsion Systems for Unmanned Aerial Vehicles,” Proc. 2nd Int. Conf. on Sustain-able Computing and Smart Systems (ICSCSS), pp. 5–9, 2024, doi: 10.1109/ICSCSS60660.2024.10625489.
- Jagan Raja V., Dhanamalar M., Solaimalai G., et al., “Machine Learning Revolutionizing Performance Evaluation: Recent Developments and Breakthroughs,” Proc. 2nd Int. Conf. on Sustainable Computing and Smart Systems (ICSCSS), pp. 780–785, 2024, doi: 10.1109/ICSCSS60660.2024.10625103.
- Sivasankari S. S., Surendiran J., Yuvaraj N., et al., “Classification of Diabetes using Multilayer Perceptron,” Proc. IEEE Int. Conf. on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 1–5, IEEE, 2022, doi: 10.1109/ICDCECE53908.2022.9793085.
- Anushkannan N. K., Kumbhar V. R., Maddila S. K., et al., “YOLO Algorithm for Helmet Detection in Industries for Safety Purpose,” Proc. 3rd Int. Conf. on Smart Electronics and Communication (ICOSEC), pp. 225–230, 2022, doi: 10.1109/ICOSEC54921.2022.9952154.
- Reddy K. S., Vijayan V. P., Das Gupta A., et al., “Implementation of Super Resolution in Images Based on Generative Adversarial Network,” Proc. 8th Int. Conf. on Smart Structures and Systems (ICSSS), pp. 1–7, 2022, doi: 10.1109/ICSSS54381.2022.9782170.
- Joseph J. A., Kumar K. K., Veerraju N., Ramadass S., Narayanan S., et al., “Artificial Intelligence Method for Detecting Brain Cancer using Ad-vanced Intelligent Algorithms,” Proc. Int. Conf. on Electronics and Sustainable Communication Systems, pp. 1482–1487, 2023, doi: 10.1109/ICESC57686.2023.10193659.
- Surendiran J., Kumar K. D., Sathiya T., et al., “Prediction of Lung Cancer at Early Stage Using Correlation Analysis and Regression Modelling,” Proc. 4th Int. Conf. on Cognitive Computing and Information Processing, 2022, doi: 10.1109/CCIP57447.2022.10058630.
- Goud D. S., Varghese V., Umare K. B., Surendiran J., et al., “Internet of Things-based Infrastructure for the Accelerated Charging of Electric Ve-hicles,” Proc. Int. Conf. on Computer Power and Communications, 2022, pp. 1–6. doi:10.1109/ICCPC55978.2022.10072086.
- Vidhya R. G., Singh K., Paul J. P., Srinivas T. A. S., Patra J. P., Sagar K. V. D., “Smart Design and Implementation of Self-Adjusting Robot using Arduino,” Proc. Int. Conf. on Augmented Intelligence and Sustainable Systems, pp. 1–6, 2022, doi: 10.1109/ICAISS55157.2022.10011083
- Vallathan G., Yanamadni V. R., et al., “An Analysis and Study of Brain Cancer with RNN Algorithm-based AI Technique,” Proc. Int. Conf. on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), pp. 637–642, 2023, doi: 10.1109/I-SMAC58438.2023.10290397.
- Vidhya R. G., Bhoopathy V., Kamal M. S., Shukla A. K., Gururaj T., Thulasimani T., “Smart Design and Implementation of Home Automation System using Wi-Fi,” Proc. Int. Conf. on Augmented Intelligence and Sustainable Systems, pp. 1203–1208, 2022, doi: 10.1109/ICAISS55157.2022.10010792
- Vidhya R., Banavath D., Kayalvili S., Naidu S. M., Prabu V. C., et al., “Alzheimer’s Disease Detection using Residual Neural Network with LSTM Hybrid Deep Learning Models,” J. Intelligent & Fuzzy Systems, 2023; vol. 45, no. 6, pp. 12095–12109. 2023, https://doi.org/10.3233/JIFS-235059.
- Balasubramaniyan S., Kumar P. K., Vaigundamoorthi M., Rahuman A. K., et al., “Deep Learning Method to Analyze the Bi-LSTM Model for En-ergy Consumption Forecasting in Smart Cities,” Proc. Int. Conf. on Sustainable Communication Networks and Application, pp. 870–876, 2023, doi: 10.1109/ICSCNA58489.2023.10370467.
- Somani V., Rahman A. N., Verma D., et al., “Classification of Motor Unit Action Potential Using Transfer Learning for the Diagnosis of Neuro-muscular Diseases,” Proc. 8th Int. Conf. on Smart Structures and Systems (ICSSS), pp. 1–7, .2022, doi: 10.1109/ICSSS54381.2022.9782209.
- Vidhya R. G., Saravanan R., Rajalakshmi K., “Mitosis Detection for Breast Cancer Grading,” Int. J. Advanced Science and Technology, 2020; vol. 29, no. 3, pp. 4478–4485.
- Gupta D., Kezia Rani B., Verma I., et al., “Metaheuristic Machine Learning Algorithms for Liver Disease Prediction,” Int. Res. J. Multidisciplinary Scope, vol. 5, no. 4, 2024, pp. 651–660. https://doi.org/10.47857/irjms.2024.v05i04.01204
- Sudhagar D., Saturi S., Choudhary M., et al., “Revolutionizing Data Transmission Efficiency in IoT-Enabled Smart Cities: A Novel Optimization-Centric Approach,” Int. Res. J. Multidisciplinary Scope, vol. 5, no. 4, pp. 592–602, 2024, doi: https://doi.org/10.47857/irjms.2024.v05i04.01113.
- Vidhya R. G., Batri K., “Segmentation, Classification and Krill Herd Optimization of Breast Cancer,” J. Medical Imaging and Health Informatics, vol. 10, no. 6, pp. 1294–1300, 2020, DOI: 10.1166/jmihi.2020.3060.
- Chintureena Thingom, Martin Margala, S Siva Shankar, Prasun Chakrabarti, RG Vidhya, “ Enhanced Task Scheduling in Cloud Computing Using the ESRNN Algorithm: A Performance‐Driven Approach”, Internet Technology Letters, vol. 8, no. 4, pp. e70037, 2025, https://doi.org/10.1002/itl2.70037.
- V. V. Satyanarayana, Tallapragada , Denis R , N. Venkateswaran , S. Gangadharan , M. Shunmugasundaram, et.al.,” A Federated Learning and Blockchain Framework for IoMT-Driven Healthcare 5.0”, International Journal of Basic and Applied Sciences, vol. 14, no. 1, pp. 246-250, 2025, doi: 10.14419/n1npsj75.
- Thupakula Bhaskar , K. Sathish , D. Rosy Salomi Victoria , Er.Tatiraju. V. Rajani Kanth , Uma Patil, et.al.,” Hybrid deep learning framework for enhanced target tracking in video surveillance using CNN and DRNN-GWO”, International Journal of Basic and Applied Sciences, vol. 14, no. 1, pp. 208-215, 2025, doi: 10.14419/wddeck70.
- Thupakula Bhaskar, Hema N , R.Rajitha Jasmine , Pearlin , Uma Patil , Madhava Rao Chunduru , et.al.,” An adaptive learning model for secure da-ta sharing in decentralized environments using blockchain technology”, International Journal of Basic and Applied Sciences, vol. 14, no. 1, pp. 216-221, 2025, doi: 10.14419/9f4z3q54.
- D, D. Krishnamoorthy, N. Ramapraba, P. S. Nagababu , K.Balaji, K. Reddy , M. K.John , W. M. Chaudhary , S. Boga , J. & Vidhya, R. G. . (2025). Deep Learning Driven Anomaly Detection in Social Graphs by Using Anti-Corona Political Optimization. International Journal of Basic and Ap-plied Sciences, 14(4), 220-228. https://doi.org/10.14419/qw8xgz45
- Manivannan, T. ., Deepa , K. ., Devendran , A. ., Neeli, G. S. . ., Uike , D. ., D, C. S. ., D, P., Chaudhary , S. ., Aancy , H. Mickle ., & Vidhya, R. G. . (2025). AI Driven Inventory Optimization Framework Using Deep Learning and Metaheuristic Algorithms. International Journal of Basic and Applied Sciences, 14(4), 405-411. https://doi.org/10.14419/vp1eee47
- Anakal , S. ., Arif , M. ., Artheeswari , S. ., Balaji , K. ., Pankajam , A. ., Augustine , P. J. ., Mohitha , . M. R. ., Patil , A. ., Aancy , H. M. ., & Vidhya, R. G. . . (2025). A Blockchain-Enabled Adaptive Learning Model for Secure and Scalable Data Sharing. International Journal of Basic and Applied Sciences, 14(4), 229-236. https://doi.org/10.14419/y90y2496
- Devi , S. ., Nisha , , S. R. ., Marotrao , S. S. ., R, R. ., Maheswari , B. U. ., Murugeswari , P. ., Augustine, P. J. . ., Chaudhary , S. ., Aancy, H. M. ., Vidhya , R. G. ., & G, S. . (2025). A Deep Learning Framework for Human Motion RecognitionUsing Compact CNNs and Swarm Optimization. International Journal of Basic and Applied Sciences, 14(4), 211-219. https://doi.org/10.14419/km6frv17.
-
Downloads
-
How to Cite
Hebri , D. ., Devi, S. . ., Selvam, P. . ., Rao , V. V. G. ., Kattoor, R. A. . ., Sridharan , M. ., Selvalakshmi , B. ., Chokkalingam , A. ., Prakash , P. ., Shinde , A. ., & Vidhya , R. G. . (2025). A Cybersecurity Threat Detection Using Advanced Neural Network Methodologies. International Journal of Basic and Applied Sciences, 14(6), 44-50. https://doi.org/10.14419/kk1qt007
