A Novel Multi-Sensor Fusion SLAM Framework for Anti-Interference
-
https://doi.org/10.14419/g10zn898
Received date: July 31, 2025
Accepted date: August 7, 2025
Published date: August 16, 2025
-
Multi-Sensor Fusion; ROS; SLAM; CLAHE Algorithm; LiDAR Noise Filtering -
Abstract
Nowadays, people have high requirements for the robustness of autonomous driving. As a key technology in the field of autonomous driving, SLAM requires a lightweight and explainable algorithm framework when dealing with perception degradation scenes. At present, most multi-sensor fusion SLAM algorithms use methods such as training neural networks or adding new odometry constraints to achieve anti-interference, but these methods do not meet the requirements. We use the data communication technology of the ROS (Robot Operating System) platform to integrate the CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm, the LiDAR Noise Filtering algorithm, and RTAB-Map (a multi-sensor fusion algorithm based on graph optimization). We then conducted experiments in three designed perception degradation scenes and used the MME indicator to quantify the experiments. The results showed that the MME of our framework in the perception-degraded environment was reduced by an average of 0.107, proving that the framework we proposed performs bet-ter than RTAB-Map in dealing with some perception degradation scenes.
-
References
- Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Maga-zine, 2(4). https://doi.org/10.1109/MITS.2010.939925.
- Liang, M., Yang, B., Chen, Y., Hu, R., & Urtasun, R. (2019). Multi-task multi-sensor fusion for 3D object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June. https://doi.org/10.1109/CVPR.2019.00752.
- Tang, Q., Liang, J., & Zhu, F. (2023). A comparative review on multi-modal sensors fusion based on deep learning. In Signal Processing (Vol. 213). https://doi.org/10.1016/j.sigpro.2023.109165.
- Liu, Z., Tang, H., Amini, A., Yang, X., Mao, H., Rus, D. L., & Han, S. (2023). BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation. Proceedings - IEEE International Conference on Robotics and Automation, 2023-May. https://doi.org/10.1109/ICRA48891.2023.10160968.
- Huang, Y., Shan, T., Chen, F., & Englot, B. (2022). DiSCo-SLAM: Distributed Scan Context-Enabled Multi-Robot LiDAR SLAM with Two-Stage Global-Local Graph Optimization. IEEE Robotics and Automation Letters, 7(2). https://doi.org/10.1109/LRA.2021.3138156.
- Labbé, M., & Michaud, F. (2019). RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of Field Robotics, 36(2). https://doi.org/10.1002/rob.21831.
- Phan, H. A., Nguyen, P. V., Khuat, T. H. T., Van, H. D., Tran, D. H. Q., Dang, B. L., Bui, T. T., Thanh, V. N. T., & Duc, T. C. (2023). A Sensor Fusion Approach for Improving Implementation Speed and Accuracy of RTAB-Map Algorithm Based Indoor 3D Mapping. Proceedings of JCSSE 2023 - 20th International Joint Conference on Computer Science and Software Engineering. https://doi.org/10.1109/JCSSE58229.2023.10201983.
- Yang, S., Song, Y., Kaess, M., & Scherer, S. (2016). Pop-up SLAM: Semantic monocular plane SLAM for low-texture environments. IEEE Inter-national Conference on Intelligent Robots and Systems, 2016-November. https://doi.org/10.1109/IROS.2016.7759204.
- Pire, T., Fischer, T., Castro, G., De Cristóforis, P., Civera, J., & Jacobo Berlles, J. (2017). S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and Autonomous Systems, 93. https://doi.org/10.1016/j.robot.2017.03.019.
- Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., & Rus, D. (2020). LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping. IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS45743.2020.9341176.
- Tuna, T., Nubert, J., Nava, Y., Khattak, S., & Hutter, M. (2024). X-ICP: Localizability-Aware LiDAR Registration for Robust Localization in Ex-treme Environments. IEEE Transactions on Robotics, 40. https://doi.org/10.1109/TRO.2023.3335691.
- Xanthidis, M., Skaldebø, M., Haugaløkken, B., Evjemo, L., Alexis, K., & Kelasidi, E. (2024). ResiVis: A Holistic Underwater Motion Planning Approach for Robust Active Perception Under Uncertainties. IEEE Robotics and Automation Letters, 9(11), 9391–9398. https://doi.org/10.1109/LRA.2024.3455893.
- Chrysanthidis, G. (2023). lidar_noise_filtering. GitHub. https://github.com/ch-geo/lidar_noise_filtering (accessed 2025 05/03/2025).
- Yu, L., Yang, E., & Yang, B. (2022). AFE-ORB-SLAM: Robust Monocular VSLAM Based on Adaptive FAST Threshold and Image Enhance-ment for Complex Lighting Environments. Journal of Intelligent and Robotic Systems: Theory and Applications, 105(2). https://doi.org/10.1007/s10846-022-01645-w.
- Lin, X., Yang, X., Yao, W., Wang, X., Ma, X., & Ma, B. (2024). Graph-based adaptive weighted fusion SLAM using multimodal data in complex underground spaces. ISPRS Journal of Photogrammetry and Remote Sensing, 217, 101–119. https://doi.org/10.1016/j.isprsjprs.2024.08.007.
- Sabry, M., Osman, M., Hussein, A., Mehrez, M. W., Jeon, S., & Melek, W. (2022). A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry. Sensors, 22(22). https://doi.org/10.3390/s22228967.
- Frosi, M., & Matteucci, M. (2022). ART-SLAM: Accurate Real-Time 6DoF LiDAR SLAM. IEEE Robotics and Automation Letters, 7(2), 2692–2699. https://doi.org/10.1109/LRA.2022.3144795.
- Ferrari, S., Giammarino, L. D., Brizi, L., & Grisetti, G. (2024). MAD-ICP: It is All About Matching Data – Robust and Informed LiDAR Odome-try. IEEE Robotics and Automation Letters, 9(11), 9175–9182. https://doi.org/10.1109/LRA.2024.3456509.
- Li, M., & Mourikis, A. I. (2013). High-precision, consistent EKF-based visual-inertial odometry. The International Journal of Robotics Research, 32(6). https://doi.org/10.1177/0278364913481251.
- Lin, J., & Zhang, F. (2022). R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package. Proceedings - IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/ICRA46639.2022.9811935.
- Jia, Y., Luo, H., Zhao, F., Jiang, G., Li, Y., Yan, J., Jiang, Z., & Wang, Z. (2021). Lvio-Fusion: A Self-adaptive Multi-sensor Fusion SLAM Framework Using Actor-critic Method. IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS51168.2021.9635905.
- Lee, J., Komatsu, R., Shinozaki, M., Kitajima, T., Asama, H., An, Q., & Yamashita, A. (2024). Switch-SLAM: Switching-Based LiDAR-Inertial-Visual SLAM for Degenerate Environments. IEEE Robotics and Automation Letters, 9(8), 7270–7277. https://doi.org/10.1109/LRA.2024.3421792.
- Li, Y., Zhang, W., Zhang, Z., Shi, X., Li, Z., Zhang, M., & Chi, W. (2025). An adaptive compensation strategy for sensors based on the degree of degradation. Biomimetic Intelligence and Robotics, 100235. https://doi.org/10.1016/j.birob.2025.100235.
- Hu, X., Wu, J., Jia, M., Yan, H., Jiang, Y., Jiang, B., Zhang, W., He, W., & Tan, P. (2025). MapEval: Towards Unified, Robust and Efficient SLAM Map Evaluation Framework. IEEE Robotics and Automation Letters, 10(5), 4228–4235. https://doi.org/10.1109/LRA.2025.3548441.
- Ding, S., & Qu, J. (2023). Research on Multi-tasking Smart Cars Based on Autonomous Driving Systems. SN Computer Science, 4(3), 292. https://doi.org/10.1007/s42979-023-01740-1.
- Li, Y., & Qu, J. (2024). A novel neural network architecture and cross-model transfer learning for multi-task autonomous driving. Data Technolo-gies and Applications, 58(5), 693–717. https://doi.org/10.1108/DTA-08-2022-0307.
- Reke, M., Peter, D., Schulte-Tigges, J., Schiffer, S., Ferrein, A., Walter, T., & Matheis, D. (2020). A self-driving car architecture in ROS2. 2020 International SAUPEC/RobMech/PRASA Conference, SAUPEC/RobMech/PRASA 2020. https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020.
- Geneva, P., Eckenhoff, K., & Huang, G. (2018). Asynchronous Multi-Sensor Fusion for 3D Mapping and Localization. Proceedings - IEEE Inter-national Conference on Robotics and Automation. https://doi.org/10.1109/ICRA.2018.8460204.
- Eros, E., Dahl, M., Bengtsson, K., Hanna, A., & Falkman, P. (2019). A ROS2 based communication architecture for control in collaborative and intelligent automation systems. Procedia Manufacturing, 38. https://doi.org/10.1016/j.promfg.2020.01.045.
- Chen, K., Hoque, R., Dharmarajan, K., Llontopl, E., Adebola, S., Ichnowski, J., Kubiatowicz, J., & Goldberg, K. (2023). FogROS2-SGC: A ROS2 Cloud Robotics Platform for Secure Global Connectivity. IEEE International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS55552.2023.10341719.
- Patoliya, J., & Mewada, H. (2019). Comprehensive study and investigation of ROS for computer vision applications using Raspberry Pi. In Interna-tional Journal of Engineering & Technology (Vol. 8, Issue 3). https://doi.org/10.14419/ijet.v8i3.29694.
- Bi, C., Shi, S., & Qu, J. (2024). Enhancing Autonomous Driving: A Novel Approach of Mixed Attack and Physical Defense Strategies. ASEAN Journal of Scientific and Technological Reports, 28(1), e254093. https://doi.org/10.55164/ajstr.v28i1.254093.
- Shi, S., & Qu, J. (2024). Multi-Task in Autonomous Driving through RDNet18-CA with LiSHTL-S Loss Function. ECTI Transactions on Comput-er and Information Technology, 18(2), 158–173.
- Hu, X., Zheng, L., Wu, J., Geng, R., Yu, Y., Wei, H., Tang, X., Wang, L., Jiao, J., & Liu, M. (2024). PALoc: Advancing SLAM Benchmarking With Prior-Assisted 6-DoF Trajectory Generation and Uncertainty Estimation. IEEE/ASME Transactions on Mechatronics, 29(6), 4297–4308. https://doi.org/10.1109/TMECH.2024.3362902.
- Wang, L.; Zhong, X.; Xu, Z.; Chai, K.; Zhao, A.; Zhao, T.; Jiang, C.; Wang, Q.; Zhang, F. (2025). LEMON-mapping: loop-enhanced large-scale multi-session point cloud merging and optimization for globally consistent mapping. arXiv, arXiv:2505.10018.
- Ding, S., & Qu, J. (2022). A Study on Safety Driving of Intelligent Vehicles Based on Attention Mechanisms. ECTI Transactions on Computer and Information Technology, 16(4). https://doi.org/10.37936/ecti-cit.2022164.248674.
- Gu, H., & Qu, J. (2025). Semantic-Aware Path Planning by Using Dynamic WeightedDijkstra for Autonomous Driving. International Journal of Basic and Applied Sciences, 14(3), 345-360. https://doi.org/10.14419/96xxwj87.
- Sizintsev, M., Rajvanshi, A., Chiu, H. P., Kaighn, K., Samarasekera, S., & Snyder, D. P. (2019). Multi-Sensor Fusion for Motion Estimation in Vis-ually-Degraded Environments. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2019. https://doi.org/10.1109/SSRR.2019.8848958.
- Tang, J., Liu, S., Liu, L., Yu, B., & Shi, W. (2020). LoPECS: A Low-Power Edge Computing System for Real-Time Autonomous Driving Services. IEEE Access, 8, 30467–30479. https://doi.org/10.1109/ACCESS.2020.2970728.
- Lu, G., Yang, H., Li, J., Kuang, Z., & Yang, R. (2023). A Lightweight Real-Time 3D LiDAR SLAM for Autonomous Vehicles in Large-Scale Ur-ban Environment. IEEE Access, 11, 12594–12606. https://doi.org/10.1109/ACCESS.2023.3241800.
-
Downloads
-
How to Cite
Ji , Y., & Qu, J. (2025). A Novel Multi-Sensor Fusion SLAM Framework for Anti-Interference. International Journal of Basic and Applied Sciences, 14(4), 462-474. https://doi.org/10.14419/g10zn898
