A Guided Stochastic Gradient Descent Enhanced Neural Networks for Early Diabetes Readmission Prediction
-
https://doi.org/10.14419/2dmybp18
Received date: July 24, 2025
Accepted date: September 10, 2025
Published date: September 24, 2025
-
Guided Stochastic Gradient Descent; Diabetes Readmission Prediction; Ensemble Learning; Artificial Neural Networks; Healthcare Analytics. -
Abstract
Diabetes is a prevalent chronic health condition globally, posing significant challenges to healthcare systems and insurance companies due to its associated risks of hospital readmission. Early prediction of readmissions, especially within 30 days, is crucial for directing attention to high-risk patients and optimizing healthcare resources. This study explores the application of machine learning models, including Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and Artificial Neural Networks (ANN), to predict diabetic readmissions. A novel approach is proposed, leveraging a guided optimizer for ANN training to enhance classification accuracy and error convergence. Results demonstrate up to a 1.5% improvement in classification accuracy compared to standard methods, highlighting the effectiveness of the guided optimizer in capturing consistent data patterns. By integrating AI-driven predictive analytics, this project aims to improve healthcare efficiency, reduce hospital readmissions, and ultimately enhance patient outcomes in diabetic care. Focusing on type II diabetes, the study addresses dataset challenges in medical bioinformatics and underscores the global significance of mitigating readmissions to alleviate the burden on healthcare systems and improve long-term patient well-being.
-
References
- R. Kejriwal and Mohana, ''Artificial intelligence (AI) in medicine and modern healthcare systems,'' in Proc. Int. Conf. Augmented Intell. Sustain. Syst. (ICAISS), Nov. 2022, pp. 25–31. https://doi.org/10.1109/ICAISS55157.2022.10010939.
- S. F. Jencks, M. V. Williams, and E. A. Coleman, ''Rehospitalizations among patients in the medicare fee-for-service program,'' NewEngland J. Med., vol. 360, no. 14, pp. 1418–1428, Apr. 2009, https://doi.org/10.1056/NEJMsa0803563.
- W. Liu, C. Stansbury, K. Singh, A. M. Ryan, D. Sukul, E. Mahmoudi, A. Waljee, J. Zhu, and B. K. Nallamothu, ''Predicting 30-day hospital read-missions using artificial neural networks with medical code embedding,'' PLoS ONE, vol. 15, no. 4, pp. 1-12, Apr. 2020, https://doi.org/10.1371/journal.pone.0221606.
- S. Davis, J. Zhang, I. Lee, M. Rezaei, R. Greiner, F. A. McAlister, and R. Padwal, ''Effective hospital readmission prediction models using ma-chine-learned features,'' BMC Health Services Res., vol. 22, no. 1, p. 1415, Nov. 2022, https://doi.org/10.1186/s12913-022-08748-y.
- A. Ashfaq, A. Sant'Anna, M. Lingman, and S. Nowaczyk, ''Readmission prediction using deep learning on electronic health records,'' J. Biomed. Informat., vol. 97, Sep. 2019, Art. no. 103256. https://www.sciencedirect.com/science/article/pii/ S1532046419301753. https://doi.org/10.1016/j.jbi.2019.103256.
- Y. Shang, K. Jiang, L. Wang, Z. Zhang, S. Zhou, Y. Liu, J. Dong, and H. Wu, ''The 30-days hospital readmission risk in diabetic patients: Predic-tive modeling with machine learning classifiers,'' BMC Med. Informat. Decis. Making, vol. 21, no. S2, p. 57, Jul. 2021. https://doi.org/10.1186/s12911-021-01423-y.
- I. B. Seraphim, V. Ravi, and A. Rajagopal, ''Prediction of diabetes readmission using machine learning,'' Int. J. Adv. Sci. Technol., vol. 29, no. 6, p. 9, 2020.
- A. Hammoudeh, G. Al-Naymat, I. Ghannam, and N. Obied, ''Predicting hospital readmission among diabetics using deep learning,'' Proc. Comput. Sci., vol. 141, pp. 484–489, 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1877050918317873. https://doi.org/10.1016/j.procs.2018.10.138.
- J. Benbassat and M. Taragin, ''Hospital readmissions as a measure of quality of health care: Advantages and limitations,'' Arch. International Med., vol. 160, no. 8, pp. 1074–1081, Apr. 2000, https://doi.org/10.1001/archinte.160.8.1074.
- C. Fischer, H. F. Lingsma, P. J. Marang-van de Mheen, D. S. Kringos, N. S. Klazinga, and E. W. Steyerberg, ''Is the readmission rate a valid quality indicator? A review of the evidence,'' PLoS ONE, vol. 9, no. 11, Nov. 2014, Art. no. e112282. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224424/. https://doi.org/10.1371/journal.pone.0112282.
- S. Upadhyay, A. L. Stephenson, and D. G. Smith, ''Readmission rates and their impact on hospital financial performance: A study of Washington hospitals,'' Inquiry, A J. Med. Care Org., Provision Financing, vol. 56, Jul. 2019, Art. no. 0046958019860386. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614936/. https://doi.org/10.1177/0046958019860386.
- C. Reid, ''Diabetes diagnosis and readmission risks predictive modelling: USA,'' 2019. [Online]. Available: https://norma.ncirl.ie/4106/.
- K. Teo, C. W. Yong, J. H. Chuah, Y. C. Hum, Y. K. Tee, K. Xia, and K. W. Lai, ''Current trends in readmission prediction: An overview of ap-proaches,'' Arabian J. Sci. Eng., pp. 11–18, Aug. 2021, https://doi.org/10.1007/s13369-021-06040-5.
- W. Li, M. S. Lipsky, E. S. Hon, W. Su, S. Su, Y. He, R. Holubkov, X. Sheng, and M. Hung, ''Predicting all-cause 90-day hospital readmission for dental patients using machine learning methods,'' BDJ Open, vol. 7, no. 1, pp. 1–7, Jan. 2021. [Online]. Available: https://www.nature.com/articles/s41405-021-00057-6. https://doi.org/10.1038/s41405-021-00057-6.
- P. Wolff, M. Graña, S. A. Ríos, and M. B. Yarza, ''Machine learning readmission risk modeling: A pediatric case study,'' BioMed Res. Int., vol. 2019, Art. no. 8532892, Apr. 2019, https://doi.org/10.1155/2019/8532892.
- K. Fawagreh, M. M. Gaber, and E. Elyan, ''Random forests: From early developments to recent advancements,'' Syst. Sci. Control Eng., vol. 2, no. 1, pp. 602–609, Dec. 2014, https://doi.org/10.1080/21642583.2014.956265.
- M. Awad and R. Khanna, ''Support vector machines for classification,'' in Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, M. Awad and R. Khanna, Eds. New York, NY, USA: Apress, pp. 39–66, https://doi.org/10.1007/978-1-4302-5990-9_3.
- A. Sharma, ''Guided parallelized stochastic gradient descent for delay compensation,'' Appl. Soft Comput., vol. 102, Apr. 2021, Art. no. 107084. https://doi.org/10.1016/j.asoc.2021.107084.
- Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data. USA: AMLBook, 2012.
- D. J. Rubin, ''Hospital readmission of patients with diabetes,'' Current Diabetes Rep., vol. 15, no. 4, p. 17, Apr. 2015. [Online]. Available: http://link.springer.com/10.1007/s11892-015-0584-7. https://doi.org/10.1007/s11892-015-0584-7.
- G. Yedluri, ''Leveraging machine learning to predict hospital readmissions - A comprehensive analysis,'' Gowthami's Portfolio, Aug. 26, 2020. [Online]. Available: http://gowthamiyedluri.com/2020-08-26-Predict-Hospital-Readmissions/.
- A. Das, S. P. Puranam, H. V. R. T. Anumukonda, G. G. Rampam, and Koteswararao Ch., ''Predictive modeling of chronic kidney disease: An en-semble ML approach,'' International Journal for Multidisciplinary Research (IJFMR), vol. 5, no. 6, pp. 1–2, 2023. [Online]. Available: https://www.ijfmr.com/papers/2023/6/9264.pdf. https://doi.org/10.36948/ijfmr.2023.v05i06.9264.
- V. Mishra, M. R. Tanniru, and J. Sreedharan, "Prediction of 30-day readmission in diabetes management using Machine learning," Computers in Biology and Medicine, vol. 195, p. 110616, June 2025, https://doi.org/10.1016/j.compbiomed.2025.110616.
- Y. He, Y. Yuan, Q. Tan, X. Zhang, Y. Liu, and M. Xiao, "Development and validation of a risk prediction model for 30-day readmission in elderly type 2 diabetes patients complicated with heart failure: a multicenter, retrospective study," Frontiers in Endocrinology, vol. 16, p. 1534516, Feb. 2025, https://doi.org/10.3389/fendo.2025.1534516.
- Y. Yang, Z. Sun, H. Liu, and K. He, ''Transformer-based models for healthcare data analysis: Opportunities and challenges,'' Computers, vol. 14, no. 4, Art. no. 148, 2025, https://doi.org/10.3390/computers14040148.
- M. Salmi, D. Atif, D. Oliva, A. Abraham, and S. Ventura, “Handling imbalanced medical datasets: Review of a decade of research,” Artificial Intel-ligence Review, Vol. 57, Issue 10, 2024, https://doi.org/10.1007/s10462-024-10884-2.
- J.-W. D. Wang, ''Naïve Bayes is an interpretable and predictive machine learning algorithm in predicting osteoporotic hip fracture in-hospital mor-tality compared to other machine learning algorithms,'' PLOS Digital Health, vol. 4, no. 1, Art. no. e0000529, 2025, https://doi.org/10.1371/journal.pdig.0000529.
- P. Michailidis, A. Dimitriadou, T. Papadimitriou, and P. Gogas, ''Forecasting hospital readmissions with machine learning,'' Healthcare, vol. 10, no. 6, p. 981, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222500/. https://doi.org/10.3390/healthcare10060981.
- Jorge García-Mosquera, María Villa-Monedero, Manuel Gil-Martín, Rubén San-Segundo, "Transformer-Based Prediction of Hospital Readmissions for Diabetes Patients," Electronics, vol. 14, no. 1, p. 174, Jan. 2025, https://doi.org/10.3390/electronics14010174.
- O. G. Emi-Johnson and K. J. Nkrumah, ''Predicting 30-day hospital readmission in patients with diabetes using machine learning on electronic health record data,'' Cureus, vol. 17, no. 4, Art. no. e82437, 2025, https://doi.org/10.7759/cureus.82437.
- V. Kumar, K. A. Abbas, and C. J. Aster, ''Endocrine system,'' in Robbins Basic Pathology, 10th ed. Canada: Elsevier, 2018, pp. 749–796. [Online]. Available: https://www.elsevier.com/books/robbins-basic-pathology/kumar/978-0-323-35317-5.
- K. P C, S. N R, and IARJSET, ''Individualized federated learning for multi-center intensive care unit hospital readiness,'' International Advanced Research Journal in Science, Engineering and Technology, vol. 11, no. 7, 2024. [Online]. Available: https://iarjset.com/wp-content/uploads/2024/07/IARJSET.2024.11757.pdf.
- P. Mahajan, R. Phadtare, and A. Singh, ''Ensemble learning for disease prediction: A review,'' Healthcare, vol. 11, no. 12, Art. no. 1808, 2023, https://doi.org/10.3390/healthcare11121808.
- B. Naderalvojoud et al., ''Improving ML with ensemble learning on healthcare problems,'' Health and Technology, vol. 14, pp. 1515–1530, 2024, https://doi.org/10.1007/s12553-024-00835-w.
- A. Mohamed, R. AlAleeli, and K. Shaalan, ''Advancing predictive healthcare: A systematic review of transformer models in EHRs,'' Computers, vol. 14, no. 4, Art. no. 148, 2025, https://doi.org/10.3390/computers14040148.
- T.-L. Hu, C.-M. Chao, C.-C. Wu, T.-N. Chien, and C. Li, "Machine Learning-Based Predictions of Mortality and Readmission in Type 2 Diabetes Patients in the ICU," Applied Sciences, vol. 14, no. 18, p. 8443, Sept. 2024, https://doi.org/10.3390/app14188443.
- HL7, ''HL7 publishes Release 5 of FHIR,'' Healthcare Innovation, 2023. [Online]. Available: https://www.hcinnovationgroup.com/interoperability-hie/fast-healthcare-interoperability-resources-fhir/news/53057286/hl7-publishes-release-5-of-fhir-standard.
- Z. L. Teo, L. Jin, N. Liu, S. Li, D. Miao, X. Zhang, W. Y. Ng, T. F. Tan, D. M. Lee, K. J. Chua, J. Heng, Y. Liu, R. S. M. Goh, and D. S. W. Ting, ''Federated machine learning in healthcare: A systematic review on clinical applications and technical architecture,'' Cell Reports Medicine, vol. 5, no. 3, Art. no. 101419, 2024, https://doi.org/10.1016/j.xcrm.2024.101419.
- Z. Sadeghi, R. Alizadehsani, M. A. Cifci, M. Khanam, S. Acharya, Y. Tan, S. U. Rehman, A. Reddy Nallabothula, M. Islam, A. Bhuiyan, V. Jahmunah, R. S. Tan, and U. R. Acharya, ''A review of explainable AI in healthcare,'' Computers and Electrical Engineering, vol. 118, Art. no. 109370, 2024, https://doi.org/10.1016/j.compeleceng.2024.109370.
- R. Alkhanbouli, H. M. A. Almadhaani, F. Alhosani, and M. C. E. Simsekler, ''The role of explainable AI in disease prediction,'' BMC Medical In-formatics and Decision Making, vol. 25, no. 1, p. 110, 2025, https://doi.org/10.1186/s12911-025-02944-6.
- E. J. Comino, M. F. Harris, M. F. Islam, D. T. Tran, B. Jalaludin, L. Jorm, J. Flack, and M. Haas, ''Impact of diabetes on hospital admission and length of stay among a general population aged 45 year or more: A record linkage study,'' BMC Health Services Res., vol. 15, no. 1, p. 12, Jan. 2015. https://doi.org/10.1186/s12913-014-0666-2.
- SMART on FHIR, ''SMART App Launch implementation guide,'' 2023. [Online]. Available: https://hl7.org/fhir/smart-app-launch/1.0.0/.
- F. Mohsen et al., "A scoping review of artificial intelligence-based methods for diabetes risk prediction," NPJ Digital Medicine, vol. 6, p. 197, 2023, https://doi.org/10.1038/s41746-023-00933-5.
- S. Tayal, "Diabetic Patients Readmission Prediction," Kaggle, 2020. [Online]. Available: https://www.kaggle.com/datasets/saurabhtayal/diabetic-patients-readmission-prediction. Accessed: Sep. 13, 2025.
-
Downloads
-
How to Cite
Vineela , G. ., & Chaitanya, G. K. . (2025). A Guided Stochastic Gradient Descent Enhanced Neural Networks for Early Diabetes Readmission Prediction. International Journal of Basic and Applied Sciences, 14(5), 813-823. https://doi.org/10.14419/2dmybp18
