Modelling The Impact of Education on Textile Workforce‎Productivity Using Psychometric Reliability, Decision Tree Analysis, ‎and Markov Chains

  • Authors

    • Sarathambal Karuppusamy Research scholar,‎ Department of Mathematics, Periyar Maniammai Institute of Science ‎& Technology (Deemed to be University), Vallam, Thanjavur - 613 403, Tamil Nadu, India
    • Arumugam Raju Assistant Professor (SG), Department of Mathematics, Periyar Maniammai Institute of Science ‎& Technology (Deemed to be University), Vallam, Thanjavur - 613 403, Tamil Nadu, India
    https://doi.org/10.14419/sz7wak44

    Received date: July 21, 2025

    Accepted date: August 28, 2025

    Published date: September 6, 2025

  • Workforce Productivity; Education Modelling; Textile Sector; Cronbach’s Alpha; Decision Tree; ‎Markov Chain
  • Abstract

    This study presents a comprehensive computational framework for analysing the impact ‎of education on workforce productivity within the textile sector. By integrating psychometric ‎analysis, decision-tree (DT) modelling, and Markov chain (MC) simulations, the research ‎evaluates the significance of educational constructs in shaping productivity outcomes. ‎Cronbach’s alpha (α) was used to assess the internal consistency of key training variables, ‎revealing high reliability, particularly for the education construct (α = 0.86). DT analysis identified ‎education as the most influential predictor, followed by age and gender, enabling the ‎prioritization of training variables. A two-step MC model was employed to simulate transitions ‎among productivity states (low, medium, high), capturing the dynamic influence of educational ‎interventions. The simulation demonstrated upward mobility among workers with improved ‎education levels, with primary and secondary education showing the highest probabilities of ‎transition. These results offer quantitative insights for industry policymakers to design targeted ‎educational strategies, optimize resource allocation, and implement scalable training programmes ‎in textile production environments‎.

  • References

    1. Căsăneanu, N.M., & Pîslaru, M. (2024). Digital lean manufacturing in the textile industry. International Journal of Computer Experimental Science and Engineering.
    2. Lee, F., Gao, J., & Singh, A. (2025). Innovation impact in the textile industry: From TPS to AI. Sustainability, 17(3), 1170. https://doi.org/10.3390/su17031170.
    3. Alanya, B. S., Huerta, L., & Ramos, D. (2024). Application of lean manufacturing in Peru textile SMEs. South African Journal of Industrial Engi-neering, 35(2), 98–109. https://doi.org/10.7166/35-2-2932.
    4. Hatif, H., Lee, K. L., & Nawanir, G. (2024). Lean practices in a Malaysian textile factory. International Journal of Industrial Management, 18(1), 1–14. https://doi.org/10.15282/ijim.18.1.2024.10425.
    5. Munir, A., Khan, R., & Iqbal, S. (2020). Time-motion study in the Pakistani apparel industry. Procedia Computer Science, 167, 2367–2376.
    6. Tejada, S., Alvarez, P., & Huaman, M. (2025). Data-driven lean framework in textile micro enterprises. Sustainability, 17(11), 5207. https://doi.org/10.3390/su17115207.
    7. Ghalawat, S., Malik, J. S., & Kumari, N. (2020). Training impact on DCM textiles. Indian Journal of Extension Education, 56(3), 35–40.
    8. Ahasn, M. R., Partanen, T., & Lee, K. (2025). Ergonomic strategies in Asia. Industrial Health.
    9. International Journal of Sustainable Development. (2025). Optimizing productivity of traditional textile artisans. International Journal of Sustaina-ble Development.
    10. Proposal of redesign of data-based lean management in Peruvian textile MSE. (2025). Unpublished manuscript.
    11. Koulali, I., & Eskil, M. T. (2023). Unsupervised textile defect detection using CNN. arXiv preprint arXiv:2301.06789. https://arxiv.org/abs/2301.06789.
    12. Kong, R. W. M., Kong, T. H. T., & Huang, T. (2025). Line balancing in modern garment industry. arXiv preprint arXiv:2503.09876.
    13. Kong, R. W. M., Kong, T. H. T., & Huang, T. (2024). Lean methodology for garment modernization. arXiv preprint arXiv:2404.06712.
    14. Spyridis, Y., Petrou, M., & Mavropoulou, E. (2024). Autonomous AI sorting pipeline for textile recycling. arXiv preprint arXiv:2402.06121.
    15. Enhancing design ability through experiential learning in textile education. (2022). Journal of Textile Science & Fashion Technology.
    16. Azonuche, J. E., Musa, K., & Bello, T. (2023). Pattern development skills among textiles students. Journal of Emerging Trends in Technology and Innovation, 3(1).
    17. Prospects of Industry 4.0 in Bangladeshi textile sector. (2024). Journal of Industrial Technology.
    18. Machine learning adoption in Brazilian industry. (2023). IEEE Transactions on Engineering Management.
    19. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555.
    20. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). McGraw-Hill.
    21. Cronbach, L. J. (1943). General theory and test reliability. Journal of Educational Psychology, 34(6), 405–417. https://doi.org/10.1037/h0058608.
    22. Meta-analysis: Vocational and process innovation in textiles. (2023). Journal of Manufacturing Systems.
    23. Chong, L. (2019). Digital empowerment in textile workforce. International Journal of Human Resource Management.
    24. Jiang, Y., Li, Z., & Chen, F. (2025). Career advancement and work performance in textile managers. Human Resource Development Quarterly.
    25. Asghar, W., Yazdani, N., & Naveed, W. (2022). Growth need intent in garment workers. Pakistan Journal of Social Sciences & Education.
    26. Patel, A., Goel, R., & Yadav, P. (2022). RanKer: AI-based employee-performance classification scheme using random kernel. Mathematics, 10(19), 3574. https://doi.org/10.3390/math10193574.
    27. Chen, D., & Wang, H. (2021). Improved C5.0 algorithm based on Bayesian network for production forecasting. Korean Institute of Smart Envi-ronment and Building Journal, 3(1), 15–22.
    28. Stewart, W. J. (2009). Probability, Markov chains, queues, and simulation: The mathematical basis of performance modeling. Princeton University Press. https://doi.org/10.1515/9781400832811.
    29. Lee, C. H., & Yu, M. (2024). Discrete event simulation model for long-haul transport forecasting. Mathematics, 12(2), 201–212. https://doi.org/10.3390/math12020201.
    30. Kontoyiannis, I., Meyn, S. P., & Zhai, A. H. (2020). Bayesian context trees for modeling discrete-time series. arXiv preprint arXiv:2004.03601.
    31. He, Z., Liu, F., & Wang, Y. (2020). A deep reinforcement learning-based DSS for textile process control. arXiv preprint arXiv:2012.01101.
    32. He, Z., Ma, Z., & Zhai, C. (2020). Multi-agent RL for production scheduling in textile SMEs. arXiv preprint arXiv:2008.04519.
    33. Mendoza, A., & Flores, L. (2023). Entropy-based decision trees for workforce optimization. Systems Science Journal, 15(3), 275–288.
    34. Koulali, I., & Eskil, M. T. (2023). Unsupervised CNN-based fabric defect detection. arXiv preprint arXiv:2301.06789.
    35. Kong, R. W. M., Kong, T. H. T., & Huang, T. (2025). Smart line balancing using lean-integrated AI systems. arXiv preprint arXiv:2305.11215.
    36. Spyridis, Y., Petrou, M., & Mavropoulou, E. (2024). Autonomous AI textile sorting for circular economy. arXiv preprint arXiv:2402.06121.
    37. Lee, F., Gao, J., & Singh, A. (2025). From Toyota production system to AI: A lean innovation study. Sustainability, 17(3), 1170. https://doi.org/10.3390/su17031170.
    38. Tejada, S., Alvarez, P., & Huaman, M. (2025). A data-driven lean framework for SMEs in Peru. Sustainability, 17(11), 5207. https://doi.org/10.3390/su17115207.
    39. Alanya, B. S., Huerta, L., & Ramos, D. (2024). Lean manufacturing interventions in Peruvian textile MSEs. South African Journal of Industrial Engineering, 35(2), 98–109. https://doi.org/10.7166/35-2-2932.
    40. Hatif, H., Lee, K. L., & Nawanir, G. (2024). Lean practices and productivity enhancement in Malaysian textile SMEs. International Journal of In-dustrial Management, 18(1), 1–14.Carretta, https://doi.org/10.15282/ijim.18.1.2024.10425.
    41. S., Costa, R., & Esposito, L. (2023). Validation of training constructs in industrial engineering. Journal of Workplace Learning, 35(3), 189–205.
    42. Jones, B. F., & McMillan, K. (2022). Educational pathways to productivity. Journal of Economic Behavior & Organization, 201, 67–82.
    43. He, M., Zhu, Y., & Chan, R. (2023). Skill formation and DT-based workforce management. Applied Soft Computing, 132, 109762. https://doi.org/10.1016/j.asoc.2022.109762.
    44. Antunes, M., & Silva, F. (2023). Decision trees in healthcare human resource planning. Health Systems, 12(1), 1–15.
    45. Kim, T. B. (2022). Retail workforce management using hybrid decision trees. Journal of Retail Analytics, 10(4), 22–30.
    46. Zhou, L., & Wang, D. (2023). Smart factory workforce decision systems. International Journal of Production Economics, 256, 108670. https://doi.org/10.1016/j.ijpe.2022.108670.
    47. Boucher, C., & Rao, J. (2023). Markov chains in workforce transition models. Journal of the Operational Research Society, 74(1), 1–15.
    48. Gruber, T. (2022). Stochastic modeling of productivity flows. Journal of Industrial & Systems Engineering, 42, 88–102.
    49. Yusof, A., & Zain, M. (2023). Markov chains for evaluating lean intervention outcomes. Journal of Manufacturing Technology Management, 34(1), 57–75.
    50. Pradhan, R., & Singh, H. (2023). Markov chain analysis of education in the informal sector. Development Studies Review, 40(2), 1–15.
    51. Hernández, A., & Silva, D. (2024). Hitting probabilities in educational growth models. Applied Mathematical Modelling, 119, 335–349. https://doi.org/10.1016/j.apm.2023.08.024.
    52. Watanabe, K. L., & Shimizu, T. (2023). Evaluating SME productivity via educational profiles. Asian Journal of Economics, 18(2), 1–12.
    53. Osei, J., & Moyo, G. (2023). Education and labour efficiency in textile clusters. African Journal of Economic Policy, 30(1), 75–90.
    54. Lakshmi, D., & Menon, S. K. (2023). A comparative study of productivity forecasting models. Computers & Industrial Engineering, 178, 109016. https://doi.org/10.1016/j.cie.2023.109016.
    55. Mahato, P., & Dey, A. (2024). Modeling educational intervention effects using Markov chains. European Journal of Operational Research, 310(2), 765–778. https://doi.org/10.1016/j.ejor.2023.07.005.
    56. Mohankumar, S., & Sivakumar, P., et al. (2025). Graph-theoretic and computational analysis of QSAR molecular descriptors for single chain dia-mond silicates. Discover Chemistry, 2, 108. https://doi.org/10.1007/s44371-025-00186-z.
    57. Mohankumar, S., et al. (2025). Ulam stability of finite dimensional quadratic/functional equation in Banach space and Banach algebra. Metallurgical and Materials Engineering, 31(5), 1761–1770.
    58. Arumugam, R., and Rajathi, M. (2019). Applications of manpower levels for business with various recruitment rates in the system through stochas-tic models. International Journal of Recent Technology and Engineering, 8(2S4), 719–722. https://doi.org/10.35940/ijrte.B1144.0782S419.
  • Downloads

  • How to Cite

    Karuppusamy , S. ., & Raju , A. . (2025). Modelling The Impact of Education on Textile Workforce‎Productivity Using Psychometric Reliability, Decision Tree Analysis, ‎and Markov Chains. International Journal of Basic and Applied Sciences, 14(5), 144-149. https://doi.org/10.14419/sz7wak44