Performance Evaluation and Site Optimization of A 5 MW Para‎bolic Dish CSP Plant

  • Authors

    • Maulik Patel Research Scholar, Engineering & Technology, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat, India
    • Dr. Sanjay. R. Vyas Department of Electrical Engineering, LDRP ITR, Gandhinagar, Gujarat, India
    https://doi.org/10.14419/qjccbx92

    Received date: July 21, 2025

    Accepted date: September 2, 2025

    Published date: September 19, 2025

  • Concentrated Solar Power System; Parabolic Disc Solar Concentrator; Clean Energy Production
  • Abstract

    The present research investigates the design and performance capabilities of a recently developed 500 m² parabolic dish solar concentrator (PDSC), designed for clean energy production and industrial thermal applications. The research demonstrates significant progress in system architecture, optical-thermal efficiency, and component integration, grounded in both empirical data and simulation results. The proposed sys‎tem employs high-reflectivity glass mirrors, a dual-axis solar tracking mechanism, and a conical cavity receiver to concentrate sunlight for ‎effective thermal conversion. A structured, multi-criteria site selection framework outlined through a flowchart guides the evaluation process ‎from national energy assessment to simulation of a 5 MW CSP plant for optimal location identification. A comparative analysis between two potential sites in Vadodara and Patan, Gujarat, investigates site-specific performance and identifies the optimal location for maximizing solar thermal energy yield, with validation carried out at a 5 MW CSP facility in both regions. Simulation tools, including MATLAB and SAM, ‎were utilized to evaluate system performance under diverse solar and environmental circumstances. The findings indicate consistent energy ‎production during peak periods and thermal energy output, facilitating industrial operations. The annual conversion efficiency varies ‎from 25% to 30%. In contrast to traditional fossil-fuel-based thermal power plants, the PDSC system provides a cleaner and more sustainable option with significantly diminished carbon emissions. Despite ongoing economic and operational constraints, the findings emphasize the significant potential of large-scale PDSC systems in sustainable energy production, especially in areas with high solar irradiation‎.

  • References

    1. Zawadski, A., & Covernty, J. (2007). Paraboloidal Dish Solar Concentrators for Multi-Megawatt Power Generation. ‎Beijing: Solar World Congress.‎
    2. Zapata, J., Lovegrove, K., & Pye, J. (2010). Steam receiver models for solar dish concentrators: two models compared. ‎In Proceedings of the 16th SolarPACES Conference, Perpignan.‎
    3. Lovegrove, K., Burgess, G., & Pye, J. (2011). A new 500 m2 paraboloidal dish solar concentrator. Solar ‎energy, 85(4), 620-626.‎ https://doi.org/10.1016/j.solener.2010.01.009.
    4. Yan, J., Peng, Y. D., Cheng, Z. R., Liu, F. M., & Tang, X. H. (2017, November). Design and implementation of a 38 ‎kW dish-Stirling concentrated solar power system. In IOP Conference Series: Earth and Environmental ‎Science (Vol. 93, No. 1, p. 012052). IOP Publishing.‎ https://doi.org/10.1088/1755-1315/93/1/012052.
    5. You-duo, P. E. N. G., & CHENG, Z. R. (2018). Design and develop for 17.70 m solar parabolic dish concentrated ‎device. Acta energiae solaris sinica, 39(9), 2544-2552.‎
    6. Li, L., Zhang, Y., Li, H., Liu, R., & Guo, P. (2024). An optimized approach for solar concentrating parabolic dish ‎based on particle swarm optimi-zation-genetic algorithm. Heliyon, 10(4).‎ https://doi.org/10.1016/j.heliyon.2024.e26165.
    7. Rajan, A., & Reddy, K. S. (2024). Integrated optical-thermal model and deep learning technique to estimate the ‎performance of a conical cavity receiver coupled solar parabolic dish collector. Energy Conversion and ‎Management, 301, 118052.‎ https://doi.org/10.1016/j.enconman.2023.118052.
    8. Dahler, F., Wild, M., Schäppi, R., Haueter, P., Cooper, T., Good, P., ... & Steinfeld, A. (2018). Optical design and ‎experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox ‎cycles. Solar Energy, 170, 568-575.‎ https://doi.org/10.1016/j.solener.2018.05.085.
    9. Babikir, M. H., Chara-Dackou, V. S., Njomo, D., Barka, M., Khayal, M. Y., Legue, D. R. K., & Gram-Shou, J. P. ‎‎(2020). Simplified modeling and simulation of electricity production from a dish/stirling system. International ‎journal of photoenergy, 2020(1), 7398496.‎ https://doi.org/10.1155/2020/7398496.
    10. Dernouni, M., Bouchekima, B., Necib, D., Arab, A., & Kheridla, F. B. (2024). Investigation of the potential for ‎electrification of remote areas using parabolic solar collectors in southern Algeria. Heliyon, 10(7).‎ https://doi.org/10.1016/j.heliyon.2024.e29264.
    11. Allouhi, H., Allouhi, A., Bentamy, A., Zafar, S., & Jamil, A. (2022). Solar Dish Stirling technology for sustainable ‎power generation in Southern Morocco: 4-E analysis. Sustainable Energy Technologies and Assessments, 52, ‎‎102065. ‎https://doi.org/10.1016/j.seta.2022.102065.
    12. Thakkar, V., Doshi, A., & Rana, A. (2015). Performance analysis methodology for parabolic dish solar concentrators ‎for process heating using thermic fluid. Journal of Mechanical and Civil Engineering, 12(1), 101-114.‎
    13. Pavlovic, S. R., & Stefanovic, V. P. (2015). Ray tracing study of optical characteristics of the solar image in the ‎receiver for a thermal solar parabol-ic dish collector. Journal of Solar Energy, 2015(1), 326536.‎ https://doi.org/10.1155/2015/326536.
    14. Blanco, M. J., & Miller, S. (2017). Introduction to concentrating solar thermal (CST) technologies. In Advances in ‎Concentrating Solar Thermal Re-search and Technology (pp. 3-25). Woodhead Publishing.‎ https://doi.org/10.1016/B978-0-08-100516-3.00001-0.
    15. Maulik P., Sanjay V, (2025).Design and Performance Analysis of a Parabolic Dish Solar a Concentrator for A Solar ‎Thermal Power Plant. Interna-tional Journal of Basic and Applied Sciences, 14 (4) (2025) 75-83.‎ https://doi.org/10.14419/a1xj2v69.
    16. Fang, Y., & Zhao, S. (2020). Risk-constrained optimal scheduling with combining heat and power for concentrating ‎solar power plants. Solar Ener-gy, 208, 937-948.‎ https://doi.org/10.1016/j.solener.2020.08.043.
    17. ‎ Li, X., & Dubowsky, S. (2011). A new design approach for solar concentrator systems using thermally isolated ‎modular collectors. Solar Energy, 85(5), 1021–1029. https://doi.org/10.1016/j.solener.2011.02.013.‎
    18. Hafez, A. Z., Abd El-Metwally, K. A., & Ismail, I. M. (2016). Design and performance evaluation of parabolic dish ‎concentrator for solar thermal applications. Renewable and Sustainable Energy Reviews, 59, 839–851. ‎https://doi.org/10.1016/j.rser.2016.01.050.‎
    19. ‎ Muller-Steinhagen, H. (2013). Concentrating solar thermal power. Philosophical Transactions of the Royal Society A: ‎Mathematical, Physical and Engineering Sciences, 371(1996), 20110433.‎ https://doi.org/10.1098/rsta.2011.0433.
    20. Sahu, S. K., K, A. S., & Natarajan, S. K. (2021). Electricity generation using solar parabolic dish system with ‎thermoelectric generator an experi-mental investigation. Heat Transfer, 50(8), 7784-7797.‎ https://doi.org/10.1002/htj.22253.
    21. NASA. (n.d.). POWER Data Access Viewer. NASA Langley Research Center. Retrieved March 6, 2025, from ‎https://power.larc.nasa.gov/data-access-viewer/‎
    22. Sharma, C., & Mishra, A. (2020). Techno-economic analysis of CSP technologies in India. Renewable and Sustainable ‎Energy Reviews, 123, 109763.‎
    23. Bhattacharya, S. C., Salam, P. A., Sharma, M., & Reddy, B. S. (2012). Energy efficiency improvements in India’s coal ‎power sector. Energy for Sustainable Development, 16(1), 91–100. https://doi.org/10.1016/j.esd.2011.09.003.
    24. International Renewable Energy Agency. (2021). Renewable power generation costs in 2020. ‎https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020.‎
  • Downloads

  • How to Cite

    Patel , M. ., & Vyas , D. S. R. . (2025). Performance Evaluation and Site Optimization of A 5 MW Para‎bolic Dish CSP Plant. International Journal of Basic and Applied Sciences, 14(5), 743-752. https://doi.org/10.14419/qjccbx92