Integration of TiC-Reinforced Aluminum Matrix Composites with CNN-Based Systems for Automotive Steering Knuckle Applications
-
https://doi.org/10.14419/7bjmmc83
Received date: July 20, 2025
Accepted date: August 5, 2025
Published date: August 12, 2025
-
Aluminum matrix composites, Titanium carbide reinforcement, Automated quality control, Deep learning in manufacturing, Lightweight automotive compo-nents, Industry 4.0 -
Abstract
This study delivers a 35% reduction in steering knuckle failures by an innovative integration between advanced materials and AI-enhanced quality control. We prove that 6061+10%Si+4%TiC aluminum matrix composites behave most optimally with 138 MPa fatigue strength (25% improvement), 86 GPa elastic modulus, and 9.2/10 rating overall while still retaining manufacturability. Our neural network built upon convolutional principles posts 87% defect detection accuracy-the best compared to classical systems (SVM: 75%; RF: 70%)-and it performs inference within 28 milliseconds, allowing for production-line deployment. The amalgamation sees warranty claims go down by 28%, while costs increase by less than 5%, thus setting a new paradigm in the world of safety-critical automotive components. This work is bridging materials science with Industry 4.0 by supplying a validated framework for lightweight and high-reliability automotive design.
-
References
- Busarac, N., D. Adamovic, N. Grujovic, and F. Zivic (2022). Lightweight materials for automobiles. IOP Conference Series: Materials Science and Engineering 1271: 012010.
- Kumar, A., V. P. Singh, R. C. Singh, S. Kumar, P. Sharma, and M. Gupta (2024). Aluminum metal matrix composites: fabrication and properties. Journal of Materials Science 59: 2644–2711.
- Yadollahi, A., and N. Shamsaei (2017). Additive manufacturing of fatigue-resistant materials. International Journal of Fatigue 98: 14–31.
- Chukwunweike, J. N., A. N. Anang, A. A. Adeniran, C. E. Okafor, and N. H. Ononiwu (2024). Deep learning for manufacturing quality. World Journal of Advanced Research and Reviews 03: 1272–1295.
- Jha, S. B., and R. F. Babiceanu (2023). CNN-based defect detection: a survey. Computers in Industry 148: 103912.
- Reddy, P. V., G. S. Kumar, D. M. Krishnudu, P. R. Rao, and K. A. Kumar (2020). Mechanical performance of Al-MMCs. Journal of Bio- and Tri-bo-Corrosion 6: 83.
- Surappa, M. K. (2003). Aluminum matrix composites: challenges. Sādhanā 28: 319–334.
- Miracle, D. B. (2005). Metal matrix composites. Composites Science and Technology 65: 2526–2540.
- Pirso, J., M. Viljus, and S. Letunovits (2007). Cr-Ni-graphite composites. Materials Science Forum 534: 1209–1212.
- Wu, R. Z., Z. K. Qu, and M. L. Zhang (2010). Mg-Li alloy reinforcements. Reviews on Advanced Materials Science 24: 35–43.
- Vijaya Ramnath, B., C. Elanchezhian, M. Jaivignesh, S. Rajesh, C. Parswajinan, and G. Siddique Ahmed (2014). Al-Al₂O₃-B₄C composites. Mate-rials & Design 58: 332–338.
- Singh, R., and A. Kumar (2022). Hybrid Al nanocomposites. Materials Today: Proceedings 56: 200–208.
- Cumbajin, E., N. Rodrigues, P. Costa, F. J. G. Silva, and R. D. S. G. Campilho (2023). CNN for surface defects. Journal of Imaging 9: 193.
- Czimmermann, T., G. Ciuti, M. Milazzo, M. Chiurazzi, S. Roccella, and C. M. Oddo (2020). Visual defect detection. Sensors 20: 1459.
- Ferguson, M., R. Ak, Y. T. T. Lee, and K. H. Law (2017). CNN for casting defects. IEEE Big Data 1726–1735.
- Shafiq, M., and Z. Gu (2022). Deep ResNet survey. Applied Sciences 12: 8972.
- Khanam, R., M. Hussain, R. Hill, D. Al-Jumeily, and M. Khalaf (2024). CNN for industrial defects. IEEE Access 12: 94250–94295.
- Krizhevsky, A., I. Sutskever, and G. E. Hinton (2017). ImageNet classification. Communications of the ACM 60: 84–90.
- Szegedy, C., S. Ioffe, V. Vanhoucke, and A. A. Alemi (2017). Inception-v4. Proceedings of the AAAI Conference on Artificial Intelligence 31: 4278–4284.
- Kumari, V., and M. K. Majumder (2025). AI-enabled 3D integration. In AI-Enabled Circuit Design, Springer, Cham, 257–308.
- Dagale, K., P. Kumar, and M. Harne (2023). Substantial review of the mechanical conditions of hybrid metal matrix composites AL 6063, SiC, and Gr. European Chemical Bulletin 12(Special Issue 5): 726–741.
- Dagale, K., and P. Kumar (2024). Analysis and material optimization of steering knuckle using FEM. Common Ground Network: 397–409.
-
Downloads
-
How to Cite
Dagale, K. ., Kumar, P. ., & Shirke , M. . (2025). Integration of TiC-Reinforced Aluminum Matrix Composites with CNN-Based Systems for Automotive Steering Knuckle Applications. International Journal of Basic and Applied Sciences, 14(SI-2), 141-147. https://doi.org/10.14419/7bjmmc83
