Predictive Modeling and Big Data Analytics ‎for Optimizing Refractory Material ‎Composition and Performance Evaluation

  • Authors

    • A. Emmanuel Peo Mariadas Department of Computer Science and Engineering, E.G.S. Pillay Engineering College, Nagapattinam , Tamil Nadu, India
    • R. Radha Department of Data Science and Business Systems, SRM Institute of Science and Technology, Chennai, Tamilnadu, India
    • P. Immaculate Rexi Jenifer Department of School of Computing, SASTRA Deemed University, Thanjavur, Tamilnadu, India
    • S. Praveen Kumar Department of Computer Science and Engineering, E.G.S. Pillay Engineering College, Nagapattinam , Tamil Nadu, India
    • Ravikanth Garladinne Associate Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Gun-‎tur, Andhra Pradesh, India
    • P. Dhanalakshmi Department of Artificial Intelligence & Machine Learning, Mohan Babu University, Tirupati, India
    https://doi.org/10.14419/ghjt2t64

    Received date: July 15, 2025

    Accepted date: August 20, 2025

    Published date: September 13, 2025

  • Artificial Intelligence; Data Processing; Data Analytics; Deep Learning; Refractory Materials
  • Abstract

    Refractory materials are essential for high-temperature industrial processes, where precise composition is critical to ensuring optimal per-‎formance. However, variability in raw materials and operating conditions poses significant challenges in maintaining consistent quality. ‎Traditional trial-and-error optimization methods are inefficient and fail to leverage the vast amounts of data generated in modern manufactur-‎ing, leading to inconsistent material performance, increased costs, and prolonged development cycles. To overcome these limitations, we ‎propose the Refractory Materials using Big Data Analytics (RM-BDA) framework, which integrates AI-driven predictive modeling with ‎advanced data analytics. RM-BDA leverages both historical and real-time data—including raw material characteristics, processing parame-‎ters, and performance metrics—to accurately predict optimal formulations and improve material performance. Using machine learning algo-‎rithms and robust data processing techniques, RM-BDA enhances prediction accuracy and accelerates formulation optimization. This allows ‎manufacturers to proactively adjust compositions and operational settings to meet targeted performance requirements, reducing waste and ‎improving efficiency. Additionally, the system dynamically responds to fluctuations in material inputs and process conditions, offering real-‎time optimization recommendations. Results demonstrate that RM-BDA significantly improves the accuracy of performance predictions, ‎reduces production costs, and enhances the consistency and quality of refractory materials. By replacing inefficient traditional methods with ‎a data-driven approach, this framework marks a substantial advancement in the field of refractory material development and optimization‎.

  • References

    1. Mummareddy, B., & Immadisetty, K. (2024). THE EMERGING ROLE OF AI IN CERAMIC ADDITIVE MANUFACTURING. Advanced Ma-terials & Processes, 182(6), 16-19. https://doi.org/10.31399/asm.amp.2024-06.p016.
    2. Motia, K., Kumar, R., & Akhai, S. (2024). AI and Smart Manufacturing: Building Industry 4.0. In Modern Management Science Practices in the Age of AI (pp. 1-28). IGI Global. https://doi.org/10.4018/979-8-3693-6720-9.ch001.
    3. Gulati, S. Application of Artificial Intelligence in Wastewater Treatment.
    4. Ouyang, B., Shan, C., Shen, S., Dai, X., Chen, Q., Su, X., ... & Pang, Z. (2024). AI-powered omics-based drug pair discovery for pyroptosis thera-py targeting triple-negative breast cancer. Nature Communications, 15(1), 7560. https://doi.org/10.1038/s41467-024-51980-9.
    5. Ajiga, D., Okeleke, P. A., Folorunsho, S. O., & Ezeigweneme, C. (2024). Enhancing software development practices with AI insights in high-tech companies.
    6. Babu, S. S., Mourad, A. H. I., Harib, K. H., & Vijayavenkataraman, S. (2023). Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual and Physical Prototyping, 18(1), e2141653. https://doi.org/10.1080/17452759.2022.2141653.
    7. Kabir, M. N., & Kabir, M. N. (2019). Technologies of the future. Knowledge-Based Social Entrepreneurship: Understanding Knowledge Economy, Innovation, and the Future of Social Entrepreneurship, 91-133. https://doi.org/10.1057/978-1-137-34809-8_4.
    8. Visan, A. I., & Negut, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life, 14(2), 233. https://doi.org/10.3390/life14020233.
    9. Oberai, A. B. (2018). Semiconductor Design and Manufacturing Interplay to Achieve Higher Yields at Reduced Costs using SMART Techniques.
    10. Pinton, P. (2023). Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion. Annals of Medicine, 55(2), 2300670. https://doi.org/10.1080/07853890.2023.2300670.
    11. Segun-Falade, O. D., Osundare, O. S., Kedi, W. E., Okeleke, P. A., Ijomah, T. I., & Abdul-Azeez, O. Y. (2024). Developing innovative software solutions for effective energy management systems in industry. Engineering Science & Technology Journal, 5(8). https://doi.org/10.51594/estj.v5i8.1517.
    12. Khan, H., Kushwah, K. K., Singh, S., Thakur, J. S., & Sadasivuni, K. K. (2023). Machine learning in additive manufacturing. Nanotechnology‐Based Additive Manufacturing: Product Design, Properties and Applications, 2, 601-636. https://doi.org/10.1002/9783527835478.ch21.
    13. Hassan, K., Thakur, A. K., Singh, G., Singh, J., Gupta, L. R., & Singh, R. (2024). Application of Artificial Intelligence in Aerospace Engineering and Its Future Directions: A Systematic Quantitative Literature Review. Archives of Computational Methods in Engineering, 1-56. https://doi.org/10.1007/s11831-024-10105-7.
    14. Chakraborty, C., Bhattacharya, M., Lee, S. S., Wen, Z. H., & Lo, Y. H. (2024). The changing scenario of drug discovery using artificial intelligence (AI) to deep learning (DL): Recent advancement, success stories, collaborations, and challenges. Molecular Therapy-Nucleic Acids. https://doi.org/10.1016/j.omtn.2024.102295.
    15. Senthil Rathi, B., Senthil Kumar, P., Sanjay, S., Prem Kumar, M., & Rangasamy, G. (2024). Artificial intelligence integration in conventional wastewater treatment techniques: techno-economic evaluation, recent progress and its future direction. International Journal of Environmental Sci-ence and Technology, 1-26. https://doi.org/10.1007/s13762-024-05725-2.
    16. Kim, D. H. (2022). Artificial intelligence-based modeling mechanisms for material analysis and discovery. Journal of Intelligent Pervasive and Soft Computing, 1(01), 10-15.
    17. Patil, T., Patil, G., & Arora, S. (2023). AI-Powered Expedition: Navigating the Cosmos for Habitable Planets through Advanced ML Techniques. https://doi.org/10.21203/rs.3.rs-3269763/v1.
    18. Sun, Z., Hu, N., Ye, Y., Chen, D., Gui, L., & Tang, R. (2024). A novel deep learning strategy to optimize Al2O3–SiO2 porous ceramics with phos-phate tailings as raw material. Ceramics International, 50(19), 35079-35088. https://doi.org/10.1016/j.ceramint.2024.06.314.
    19. Huang, A., Huo, Y., Yang, J., & Li, G. (2019). Computational simulation and prediction on electrical conductivity of oxide-based melts by big data mining. Materials, 12(7), 1059. https://doi.org/10.3390/ma12071059.
    20. Radhakrishnan Subramaniam, Prashobhan Palakeel, Manimuthu Arunmozhi, Manikandan Sridharan, Uthayakumar Marimuthu, "Factors driving business intelligence adoption: an extended technology-organization-environment framework", Indonesian Journal of Electrical Engineering and Computer Science Vol. 34, No. 3, June 2024, pp. 1893~1903 ISSN: 2502-4752, https://doi.org/10.11591/ijeecs.v34.i3.pp1893-1903.
    21. Sado, S., Jastrzębska, I., Zelik, W., & Szczerba, J. (2023). Current State of Application of Machine Learning for Investigation of MgO-C Refracto-ries: A Review. Materials, 16(23), 7396. https://doi.org/10.3390/ma16237396.
    22. Krzywanski, J., Sosnowski, M., Grabowska, K., Zylka, A., Lasek, L., & Kijo-Kleczkowska, A. (2024). Advanced Computational Methods for Modeling, Prediction and Optimization—A Review. Materials, 17(14), 3521. https://doi.org/10.3390/ma17143521.
    23. González-González, D. S., Praga-Alejo, R. J., Cantu-Sifuentes, M., & Alvarez-Vera, M. (2020). Fuzzy modeling of refractory cement viscosity to improve thermocouples manufacturing process. Soft Computing, 24, 17035-17050. https://doi.org/10.1007/s00500-020-04995-5.
    24. Giles, S. A., Sengupta, D., Broderick, S. R., & Rajan, K. (2022). Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength. npj Computational Materials, 8(1), 235. https://doi.org/10.1038/s41524-022-00926-0.
    25. S. Manikandan, P. Dhanalakshmi, K. C. Rajeswari and A. Delphin Carolina Rani, "Deep sentiment learning for measuring similarity recommenda-tions in twitter data," Intelligent Automation & Soft Computing, vol. 34, no.1, pp. 183–192, 2022. https://doi.org/10.32604/iasc.2022.023469.
    26. Nanda, S., Choudhury, A., Chandra, K. S., & Sarkar, D. (2023). Raw materials, microstructure, and properties of MgO–C refractories: directions for refractory recipe development. Journal of the European Ceramic Society, 43(1), 14-36. https://doi.org/10.1016/j.jeurceramsoc.2022.09.032.
    27. Zhang, L., Li, X., Qu, X., Qin, M., Que, Z., Wei, Z., ... & Dong, Y. (2023). Powder metallurgy route to ultrafine‐grained refractory met-als. Advanced Materials, 35(50), 2205807. https://doi.org/10.1002/adma.202205807.
    28. Zhang, H. D., Yu, H., Ning, J., Zhang, L. J., Pan, A. F., & Wang, W. J. (2024). Experimental research on micro-drilling of refractory material tung-sten by multi-pulse femtosecond laser ablation. Optics & Laser Technology, 168, 109962. https://doi.org/10.1016/j.optlastec.2023.109962.
    29. Gomes, M. R., Leber, T., Tillmann, T., Kenn, D., Gavagnin, D., Tonnesen, T., & Gonzalez-Julian, J. (2024). Towards H2 implementation in the iron-and steelmaking industry: State of the art, requirements, and challenges for refractory materials. Journal of the European Ceramic Society, 44(3), 1307-1334. https://doi.org/10.1016/j.jeurceramsoc.2023.10.044.
  • Downloads

  • How to Cite

    Mariadas, A. E. P. ., Radha , R. ., Jenifer , P. I. R. ., Kumar, S. P. . ., Garladinne , R. ., & Dhanalakshmi , P. . (2025). Predictive Modeling and Big Data Analytics ‎for Optimizing Refractory Material ‎Composition and Performance Evaluation. International Journal of Basic and Applied Sciences, 14(5), 403-416. https://doi.org/10.14419/ghjt2t64