Predictive Modeling and Big Data Analytics for Optimizing Refractory Material Composition and Performance Evaluation
-
https://doi.org/10.14419/ghjt2t64
Received date: July 15, 2025
Accepted date: August 20, 2025
Published date: September 13, 2025
-
Artificial Intelligence; Data Processing; Data Analytics; Deep Learning; Refractory Materials -
Abstract
Refractory materials are essential for high-temperature industrial processes, where precise composition is critical to ensuring optimal per-formance. However, variability in raw materials and operating conditions poses significant challenges in maintaining consistent quality. Traditional trial-and-error optimization methods are inefficient and fail to leverage the vast amounts of data generated in modern manufactur-ing, leading to inconsistent material performance, increased costs, and prolonged development cycles. To overcome these limitations, we propose the Refractory Materials using Big Data Analytics (RM-BDA) framework, which integrates AI-driven predictive modeling with advanced data analytics. RM-BDA leverages both historical and real-time data—including raw material characteristics, processing parame-ters, and performance metrics—to accurately predict optimal formulations and improve material performance. Using machine learning algo-rithms and robust data processing techniques, RM-BDA enhances prediction accuracy and accelerates formulation optimization. This allows manufacturers to proactively adjust compositions and operational settings to meet targeted performance requirements, reducing waste and improving efficiency. Additionally, the system dynamically responds to fluctuations in material inputs and process conditions, offering real-time optimization recommendations. Results demonstrate that RM-BDA significantly improves the accuracy of performance predictions, reduces production costs, and enhances the consistency and quality of refractory materials. By replacing inefficient traditional methods with a data-driven approach, this framework marks a substantial advancement in the field of refractory material development and optimization.
-
References
- Mummareddy, B., & Immadisetty, K. (2024). THE EMERGING ROLE OF AI IN CERAMIC ADDITIVE MANUFACTURING. Advanced Ma-terials & Processes, 182(6), 16-19. https://doi.org/10.31399/asm.amp.2024-06.p016.
- Motia, K., Kumar, R., & Akhai, S. (2024). AI and Smart Manufacturing: Building Industry 4.0. In Modern Management Science Practices in the Age of AI (pp. 1-28). IGI Global. https://doi.org/10.4018/979-8-3693-6720-9.ch001.
- Gulati, S. Application of Artificial Intelligence in Wastewater Treatment.
- Ouyang, B., Shan, C., Shen, S., Dai, X., Chen, Q., Su, X., ... & Pang, Z. (2024). AI-powered omics-based drug pair discovery for pyroptosis thera-py targeting triple-negative breast cancer. Nature Communications, 15(1), 7560. https://doi.org/10.1038/s41467-024-51980-9.
- Ajiga, D., Okeleke, P. A., Folorunsho, S. O., & Ezeigweneme, C. (2024). Enhancing software development practices with AI insights in high-tech companies.
- Babu, S. S., Mourad, A. H. I., Harib, K. H., & Vijayavenkataraman, S. (2023). Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual and Physical Prototyping, 18(1), e2141653. https://doi.org/10.1080/17452759.2022.2141653.
- Kabir, M. N., & Kabir, M. N. (2019). Technologies of the future. Knowledge-Based Social Entrepreneurship: Understanding Knowledge Economy, Innovation, and the Future of Social Entrepreneurship, 91-133. https://doi.org/10.1057/978-1-137-34809-8_4.
- Visan, A. I., & Negut, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life, 14(2), 233. https://doi.org/10.3390/life14020233.
- Oberai, A. B. (2018). Semiconductor Design and Manufacturing Interplay to Achieve Higher Yields at Reduced Costs using SMART Techniques.
- Pinton, P. (2023). Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion. Annals of Medicine, 55(2), 2300670. https://doi.org/10.1080/07853890.2023.2300670.
- Segun-Falade, O. D., Osundare, O. S., Kedi, W. E., Okeleke, P. A., Ijomah, T. I., & Abdul-Azeez, O. Y. (2024). Developing innovative software solutions for effective energy management systems in industry. Engineering Science & Technology Journal, 5(8). https://doi.org/10.51594/estj.v5i8.1517.
- Khan, H., Kushwah, K. K., Singh, S., Thakur, J. S., & Sadasivuni, K. K. (2023). Machine learning in additive manufacturing. Nanotechnology‐Based Additive Manufacturing: Product Design, Properties and Applications, 2, 601-636. https://doi.org/10.1002/9783527835478.ch21.
- Hassan, K., Thakur, A. K., Singh, G., Singh, J., Gupta, L. R., & Singh, R. (2024). Application of Artificial Intelligence in Aerospace Engineering and Its Future Directions: A Systematic Quantitative Literature Review. Archives of Computational Methods in Engineering, 1-56. https://doi.org/10.1007/s11831-024-10105-7.
- Chakraborty, C., Bhattacharya, M., Lee, S. S., Wen, Z. H., & Lo, Y. H. (2024). The changing scenario of drug discovery using artificial intelligence (AI) to deep learning (DL): Recent advancement, success stories, collaborations, and challenges. Molecular Therapy-Nucleic Acids. https://doi.org/10.1016/j.omtn.2024.102295.
- Senthil Rathi, B., Senthil Kumar, P., Sanjay, S., Prem Kumar, M., & Rangasamy, G. (2024). Artificial intelligence integration in conventional wastewater treatment techniques: techno-economic evaluation, recent progress and its future direction. International Journal of Environmental Sci-ence and Technology, 1-26. https://doi.org/10.1007/s13762-024-05725-2.
- Kim, D. H. (2022). Artificial intelligence-based modeling mechanisms for material analysis and discovery. Journal of Intelligent Pervasive and Soft Computing, 1(01), 10-15.
- Patil, T., Patil, G., & Arora, S. (2023). AI-Powered Expedition: Navigating the Cosmos for Habitable Planets through Advanced ML Techniques. https://doi.org/10.21203/rs.3.rs-3269763/v1.
- Sun, Z., Hu, N., Ye, Y., Chen, D., Gui, L., & Tang, R. (2024). A novel deep learning strategy to optimize Al2O3–SiO2 porous ceramics with phos-phate tailings as raw material. Ceramics International, 50(19), 35079-35088. https://doi.org/10.1016/j.ceramint.2024.06.314.
- Huang, A., Huo, Y., Yang, J., & Li, G. (2019). Computational simulation and prediction on electrical conductivity of oxide-based melts by big data mining. Materials, 12(7), 1059. https://doi.org/10.3390/ma12071059.
- Radhakrishnan Subramaniam, Prashobhan Palakeel, Manimuthu Arunmozhi, Manikandan Sridharan, Uthayakumar Marimuthu, "Factors driving business intelligence adoption: an extended technology-organization-environment framework", Indonesian Journal of Electrical Engineering and Computer Science Vol. 34, No. 3, June 2024, pp. 1893~1903 ISSN: 2502-4752, https://doi.org/10.11591/ijeecs.v34.i3.pp1893-1903.
- Sado, S., Jastrzębska, I., Zelik, W., & Szczerba, J. (2023). Current State of Application of Machine Learning for Investigation of MgO-C Refracto-ries: A Review. Materials, 16(23), 7396. https://doi.org/10.3390/ma16237396.
- Krzywanski, J., Sosnowski, M., Grabowska, K., Zylka, A., Lasek, L., & Kijo-Kleczkowska, A. (2024). Advanced Computational Methods for Modeling, Prediction and Optimization—A Review. Materials, 17(14), 3521. https://doi.org/10.3390/ma17143521.
- González-González, D. S., Praga-Alejo, R. J., Cantu-Sifuentes, M., & Alvarez-Vera, M. (2020). Fuzzy modeling of refractory cement viscosity to improve thermocouples manufacturing process. Soft Computing, 24, 17035-17050. https://doi.org/10.1007/s00500-020-04995-5.
- Giles, S. A., Sengupta, D., Broderick, S. R., & Rajan, K. (2022). Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength. npj Computational Materials, 8(1), 235. https://doi.org/10.1038/s41524-022-00926-0.
- S. Manikandan, P. Dhanalakshmi, K. C. Rajeswari and A. Delphin Carolina Rani, "Deep sentiment learning for measuring similarity recommenda-tions in twitter data," Intelligent Automation & Soft Computing, vol. 34, no.1, pp. 183–192, 2022. https://doi.org/10.32604/iasc.2022.023469.
- Nanda, S., Choudhury, A., Chandra, K. S., & Sarkar, D. (2023). Raw materials, microstructure, and properties of MgO–C refractories: directions for refractory recipe development. Journal of the European Ceramic Society, 43(1), 14-36. https://doi.org/10.1016/j.jeurceramsoc.2022.09.032.
- Zhang, L., Li, X., Qu, X., Qin, M., Que, Z., Wei, Z., ... & Dong, Y. (2023). Powder metallurgy route to ultrafine‐grained refractory met-als. Advanced Materials, 35(50), 2205807. https://doi.org/10.1002/adma.202205807.
- Zhang, H. D., Yu, H., Ning, J., Zhang, L. J., Pan, A. F., & Wang, W. J. (2024). Experimental research on micro-drilling of refractory material tung-sten by multi-pulse femtosecond laser ablation. Optics & Laser Technology, 168, 109962. https://doi.org/10.1016/j.optlastec.2023.109962.
- Gomes, M. R., Leber, T., Tillmann, T., Kenn, D., Gavagnin, D., Tonnesen, T., & Gonzalez-Julian, J. (2024). Towards H2 implementation in the iron-and steelmaking industry: State of the art, requirements, and challenges for refractory materials. Journal of the European Ceramic Society, 44(3), 1307-1334. https://doi.org/10.1016/j.jeurceramsoc.2023.10.044.
-
Downloads
-
How to Cite
Mariadas, A. E. P. ., Radha , R. ., Jenifer , P. I. R. ., Kumar, S. P. . ., Garladinne , R. ., & Dhanalakshmi , P. . (2025). Predictive Modeling and Big Data Analytics for Optimizing Refractory Material Composition and Performance Evaluation. International Journal of Basic and Applied Sciences, 14(5), 403-416. https://doi.org/10.14419/ghjt2t64
