An enhanced CBIR System Using Modified VGG16 ‎with Stacked SVM, Random Forest, and XGBoost ‎ ‎Classifiers

  • Authors

    • S Ravi Department of Computer Science and Engineering, Parul Institute of Engineering and Technology, Parul University, Vadodara, Gujarat, India
    • Kamal Sutaria Department of Computer Science and Engineering, Parul Institute of Engineering and Technology, Parul University, Vadodara, Gujarat, India
    https://doi.org/10.14419/scxj1q69

    Received date: July 15, 2025

    Accepted date: August 26, 2025

    Published date: September 4, 2025

  • Convolutional Neural Network (CNN); Content-Based Image Retrieval (CBIR); Extreme Gradient Boosting (XGBoost); Random Forest (RF)‎.
  • Abstract

    CBIR systems have improved large image dataset search and management, yet traditional techniques with HSV GLCM and SIFT experience ‎limited precision because of their insufficient feature extraction abilities. The research requires additional efforts to boost retrieval precision and ‎the overall computer vision model functioning, specifically for CNN-SVM constructions. Through VGG16-based feature extraction, a newly ‎proposed hybrid Content-Based Image Retrieval framework incorporates a stacked classification system built using SVM alongside RF and ‎XGBoost for decision-making. Tests on the Wang dataset validated this model by showing the CNN-SVM baseline model delivering precision ‎levels of 83.61% at 10 retrievals, and both 83.67% at 15 and 83.37% at 20 retrievals. Implementing stacked classifiers produced advanced ‎decision boundaries that improved classification performance while raising total precision by 12.06% at all retrieval settings above the baseline ‎model. The research work establishes the basic groundwork for next-generation hybrid CBIR approaches while demonstrating the benefits of ‎deep learning and ensemble technologies in improving retrieval performance.

  • References

    1. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell. 2000;22(12):1349–80. https://doi.org/10.1109/34.895972.
    2. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94.
    3. Zhang D, Lu G. Review of shape representation and description techniques. Pattern Recognit. 2004;37(1):1–19. https://doi.org/10.1016/j.patcog.2003.07.008.
    4. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): MIT Press; 2016.
    5. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097–105.
    6. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2009. p. 248–55. https://doi.org/10.1109/CVPR.2009.5206848.
    7. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Repre-sentations (ICLR); 2015.
    8. Patel S, Patel J, Prajapati M. A hybrid approach for content-based image retrieval using VGG16. In: Proceedings of the International Conference on Computer Vision and Image Processing. Singapore: Springer; 2021. p. 73–85.
    9. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97. https://doi.org/10.1007/BF00994018.
    10. Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.
    11. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. p. 785–94. https://doi.org/10.1145/2939672.2939785.
    12. Wang J, Yuan B. Content-based image retrieval techniques and trends. In: Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries; 2001. p. 2–10.
    13. Datta R, Joshi D, Li J, Wang JZ. Image retrieval: Ideas, influences, and trends of the new age. ACM Comput Surv. 2008;40(2):1–60. https://doi.org/10.1145/1348246.1348248.
    14. Elhariri E, Rashwan H, Aly A. A comprehensive survey of hybrid content-based image retrieval systems. J Vis Commun Image Represent. 2018;58:454–69.
    15. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014. p. 580–7. https://doi.org/10.1109/CVPR.2014.81.
    16. Yang G, Sun Z, Zhang D. A novel content-based image retrieval system using SIFT feature. Int J Adv Comput Sci Appl. 2011;2(6):123–30.
    17. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pat-tern Recognition (CVPR); 2016. p. 770–8. https://doi.org/10.1109/CVPR.2016.90.
    18. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. p. 1–9. https://doi.org/10.1109/CVPR.2015.7298594.
    19. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? Adv Neural Inf Process Syst. 2014;27:3320–8.
    20. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV); 2014. p. 818–33. https://doi.org/10.1007/978-3-319-10590-1_53.
    21. Gao Q, Zhang X, Li H. A comparative study of hybrid methods for CBIR. Multimed Tools Appl. 2017;76(22):23979–99.
    22. Kim K, Park K. Hybrid deep learning-based image retrieval system using attention mechanism. Pattern Recognit Lett. 2020;135:309–15.
    23. Liang L, Xie H. Deep hashing networks for content-based image retrieval. Neurocomputing. 2019;343:96–105.
    24. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd In-ternational Conference on Machine Learning (ICML); 2015. p. 448–56.
    25. He Y, Ding S, Zhang T, Chen D. Attention mechanism in computer vision: A survey. Comput Vis Media. 2020;6(3):259–78.
    26. Jing Y, Yang Y, Feng Z, Ye Y, Song M. Neural style transfer: A review. IEEE Trans Vis Comput Graph. 2019;26(11):3365–85. https://doi.org/10.1109/TVCG.2019.2921336.
    27. Zhu Y, Xu Y, Xu Z, Tao D. An image tag completion method based on weighted multi-view learning. IEEE Trans Multimedia. 2017;19(6):1280–95.
    28. Kim K, Park K. Hybrid deep learning-based image retrieval system using attention mechanism. Pattern Recognit Lett. 2020;135:309–15.
    29. He Y, Ding S, Zhang T, Chen D. Attention mechanism in computer vision: A survey. Comput Vis Media. 2020;6(3):259–78.
    30. Gao H, Chen H, Li X. Transformer-based attention networks for content-based image retrieval. IEEE Trans Multimedia. 2021;23:4032–44.
  • Downloads

  • How to Cite

    Ravi, S. ., & Sutaria, K. . (2025). An enhanced CBIR System Using Modified VGG16 ‎with Stacked SVM, Random Forest, and XGBoost ‎ ‎Classifiers. International Journal of Basic and Applied Sciences, 14(5), 87-97. https://doi.org/10.14419/scxj1q69