Synergistic Effect of Mixed Transition Metals and Rare Earth Doping on ‎Lithium Borate Glasses: A Structural and Optical Perspective

  • Authors

    • Anju Bishnoi Department of Electronics & Communication Engineering, Deenbandhu Chhotu Ram ‎University of Science & Technology, Murthal, Sonepat, India-131039
    • Manoj Duhan Department of Electronics & Communication Engineering, Deenbandhu Chhotu Ram ‎University of Science & Technology, Murthal, Sonepat, India-131039
    • Satish Khasa Department of Physics, Deenbandhu Chhotu Ram University of Science & Technology, ‎Murthal, Sonepat, India-131039‎
    https://doi.org/10.14419/25ecam43

    Received date: July 14, 2025

    Accepted date: July 24, 2025

    Published date: July 27, 2025

  • Dysprosium; Photoluminescence; Titanium Dioxide; Transition Metal Ions (TMI); Y/B Ratio
  • Abstract

    Lithium borate glasses doped with transition metal and rare earth elements have gained ‎prominence for their tunable optical properties and diverse technological applications. In this ‎research article, we delve into the unique contributions of key elements, dysprosium (Dy), ‎titanium (Ti), and vanadium (V), in lithium borate glass matrices. The titanium borovandate ‎glass system doped with Dy3+ ions with molar compositions xTiO2·(10-x)V2O5·30Li2O·60B2O3 ‎‎+ 1 mol% Dy2O3 glasses (with x = 0,1,3,5,9,10) have been synthesised using the melt quench ‎technique. An extensive investigation of the structural and optical features has been carried out ‎to evaluate the effects of titanium ions as an addition to the glass matrix. Multiple valence states ‎of titanium (Ti3+ and Ti4+) and that of vanadium (V3+, V4+, and V5+) were unveiled through ‎density variations and UV absorbance analysis. The shifts in bandgap have been ascertained by ‎using a Tauc plot. Photoluminescence spectroscopy (PL) has been utilised to investigate the ‎existence of intrinsic defects in the glass system and the influence of transition metal ions ‎‎(TiO2 and V2O5) on the emission spectra. CIE chromaticity coordinates of the samples have ‎been analysed in the white region, revealing their potential applications in display devices and ‎optical filters‎.

  • References

    1. S. Dalal, S. Khasa, M.S. Dahiya, A. Yadav, A. Agarwal, S. Dahiya, Optical and ‎thermal investigations on vanadyl doped zinc lithium borate glass-es, J. Asian Ceram. ‎Soc. 3 (2015) 234–239. Available online: https://doi.org/10.1016/j.jascer.2015.03.004.
    2. S.K. Arya, M.K. Chhina, R. Choudhary, V. Dua, K. Singh, Growth of different ‎nanocrystalline phases in ZnO–Li2O–B2O3–TiO2–V2O5 glass and their effect on ‎photoluminescence and photocatalytic activity, Ceram. Int. 48 (2022) 20619–20626. ‎Available online: https://doi.org/10.1016/j.ceramint.2022.04.030.
    3. ‎G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, U. Caldiño, I. V. Kityk, M.A. ‎Mahdi, Optical absorption, luminescence, and energy transfer processes studies for Dy3+ ‎‎/Tb3+-codoped borate glasses for solid-state lighting applications, Opt. Mater. (Amst). 72 ‎‎(2017) 380–391. Available online: https://doi.org/10.1016/j.optmat.2017.06.030.
    4. A. Bishnoi, M. Duhan, S. Khasa, An insight into the transition metal dependent ‎structural, optical, and electrical properties of dysprosium doped lithium zinc borate ‎glasses, Mol. Cryst. Liq. Cryst. 0 (2023) 1–21. Available online: https://doi.org/10.1080/15421406.2023.2256577.
    5. M.A. Marzouk, S.M. Abo-Naf, H.A. Zayed, N.S. Hassan, Glass Former Effects on ‎Photoluminescence and Optical Properties of Some Heavy Met-al Oxide Glasses Doped ‎with Transition Metal Ions, J. Appl. Spectrosc. 84 (2017) 162–169. Available online: https://doi.org/10.1007/s10812-017-0445-z.
    6. ‎H.M. Gomaa, S.M. Elkatlawy, I.S. Yahia, H.A. Saudi, A.M. Abdel-Ghany, Influence ‎of the gradual increase of TiO2-impurities on the structural and optical properties of some ‎calcium sodium borate glasses, Optik (Stuttg). 244 (2021) 167543. Available online: ‎https://doi.org/10.1016/j.ijleo.2021.167543.
    7. Luminescence - 2023 - Vijayalakshmi - Noncytotoxic Dy3+‐activated glass emits cool ‎white light for near ultraviolet‐based.pdf, (n.d.).‎
    8. ‎J. Dahiya, A. Hooda, A. Agarwal, S. Khasa, Tuneable colour flexibility in Dy3+ & Eu3+ ‎co-doped lithium fluoride bismuth borate glass system for solid state lighting ‎applications, J. Non. Cryst. Solids. 576 (2022) 121237. Available online: ‎https://doi.org/10.1016/j.jnoncrysol.2021.121237.
    9. N. Deopa, A.S. Rao, Photoluminescence and energy transfer studies of Dy3+ ions doped ‎lithium lead alumino borate glasses for w-LED and laser applications, J. Lumin. 192 ‎‎(2017) 832–841. Available online: https://doi.org/10.1016/j.jlumin.2017.07.052.
    10. ‎P.S. Gahlot, V.P. Seth, A. Agarwal, N. Kishore, S.K. Gupta, M. Arora, D.R. Goyal, ‎Influence of ZnO on optical properties and dc conductivity of vanadyl-doped alkali ‎bismuthate glasses, Radiat. Eff. Defects Solids. 159 (2004) 223–231. Available online: ‎https://doi.org/10.1080/1042015042000209334.
    11. A. V. Deshpande, N.S. Paighan, Electrical conductivity of lithium borosilicate glasses ‎modified with TiO2, IOP Conf. Ser. Mater. Sci. Eng. 2 (2009). Available online: ‎https://doi.org/10.1088/1757-899X/2/1/012051.
    12. D. Prakash, V.P. Seth, I. Chand, P. Chand, EPR study of vanadyl ion in CoO · PbO · ‎B2O3 glasses, J. Non. Cryst. Solids. 204 (1996) 46–52. Available online: ‎https://doi.org/10.1016/0022-3093(96)00391-2.
    13. ‎S.K. Arya, S.S. Danewalia, M. Arora, K. Singh, Effect of variable oxidation states of ‎vanadium on the structural, optical, and dielectric properties of B2O3-Li2O-ZnO-V2O5 ‎glasses, 2016. Available online: https://doi.org/10.1021/acs.jpcb.6b08285.
    14. S.K. Arya, G. Kaur, K. Singh, Effect of vanadium on the optical and physical properties ‎of lithium borate glasses, J. Non. Cryst. Solids. 432 (2016) 393–398. Available online: ‎https://doi.org/10.1016/j.jnoncrysol.2015.10.037.
    15. S.K. Arya, K. Singh, Structural and optical properties of 30Li2O-55B2O3-5ZnO-xTiO2-‎‎(10 -x)V2O5, (0 ≤ x ≤ 10) glasses, J. Non. Cryst. Solids. 414 (2015) 51–58. Available ‎online: https://doi.org/10.1016/j.jnoncrysol.2015.02.004.
    16. A.S. Abouhaswa, H.M.H. Zakaly, S.A.M. Issa, M. Rashad, M. Pyshkina, H.O. Tekin, ‎R. El-Mallawany, M.Y.A. Mostafa, Synthesis, physical, opti-cal, mechanical, and ‎radiation attenuation properties of TiO2–Na2O–Bi2O3–B2O3 glasses, Ceram. Int. 47 ‎‎(2021) 185–204. Available online: https://doi.org/10.1016/j.ceramint.2020.08.122.
    17. ‎A.M. Abdelghany, H.A. Elbatal, Effect of TiO2 doping and gamma ray irradiation on ‎the properties of SrO–B2O3 glasses, J. Non. Cryst. Solids. 379 (2013) 214–219. ‎Available online: https://doi.org/10.1016/j.jnoncrysol.2013.08.020.
    18. M.S. Sadeq, H.Y. Morshidy, Effect of mixed rare-earth ions on the structural and optical ‎properties of some borate glasses, Ceram. Int. 45 (2019) 18327–18332. Available ‎online: https://doi.org/10.1016/j.ceramint.2019.06.046.
    19. ‎L. Murawski, C.H. Chung, J.D. Mackenzie, Electrical properties of semiconducting ‎oxide glasses, J. Non. Cryst. Solids. 32 (1979) 91–104. Availa-ble online: https://doi.org/10.1016/0022-3093(79)90066-8.
    20. B. Tirumala Rao, B.R. Venkateswara Rao, Ch.Rajyalakshmi, G. Sridevi, M. Rajesh ‎Yadav, G.V.L. Kanth, S. Cole, Characterization and spectro-scopic investigations of zinc ‎alumino lithium borate glasses doped with TiO2, Mater. Today Proc. (2023). Available ‎online: https://doi.org/10.1016/j.matpr.2023.06.076.
    21. V. Kesarwani, V.K. Rai, Effect of adding TiO2 as modifier on the optical thermometric ‎ability of tellurium tungstate glass, Mater. Res. Bull. 167 (2023) 112445. Available ‎online: https://doi.org/10.1016/j.materresbull.2023.112445.
    22. B. Srinivas, A. Hameed, G. Srinivas, M. Narasimha Chary, M. Shareefuddin, Influence ‎of V2O5 on physical and spectral (optical, EPR & FTIR) studies of SrO-TeO2-TiO2-‎B2O3 glasses, Optik (Stuttg). 225 (2021). Available online: ‎https://doi.org/10.1016/j.ijleo.2020.165815.
    23. S. Cetinkaya Colak, Role of titanium ions on the optical and thermal properties of zinc ‎borate glass doped with TiO2, Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B. 58 ‎‎(2017) 41–48. Available online: https://doi.org/10.13036/17533562.57.2.067.
    24. B. V. Padlyak, I.I. Kindrat, V.T. Adamiv, I.M. Teslyuk, A. Drzewiecki, Spectroscopic ‎properties and luminescence of the lithium tetraborate glass-es co-doped with manganese ‎and europium, Opt. Mater. (Amst). 154 (2024) 115782. Available online: ‎https://doi.org/10.1016/j.optmat.2024.115782.
    25. ‎P. Sai Dinesh, M. Kumar, Y.C. Ratnakaram, Impact of modifiers on structural and ‎optical properties of Dy3+doped different lithium tetraborate glasses for W-LED ‎applications, Infrared Phys. Technol. 136 (2024) 105029. Available online: ‎https://doi.org/10.1016/j.infrared.2023.105029.
    26. S. Karthika, S.S. Sundari, K. Marimuthu, P. Meena, Enhancement of electrical and ‎radiation shielding properties of vanadium doped lithium tellu-ro-borate (LTB) glasses, ‎Chem. Phys. Impact. 8 (2024) 100430. Available online: ‎https://doi.org/10.1016/j.chphi.2023.100430.
    27. ‎S. Raheja, R. Singh, Modification of niobium borate glasses doped with titanium for ‎optical applications, Mater. Today Proc. (2024). Available online: ‎https://doi.org/10.1016/j.matpr.2024.05.033.
    28. ‎M. Sreenivasulu, V.K. Chavan, B. Rupa Venkateswara Rao, High Density and Thermal ‎Stability of Vanadium-Doped Glass Material for Optical Bandpass Filter, Arab. J. Sci. ‎Eng. 48 (2023) 8035–8046. Available online: https://doi.org/10.1007/s13369-022-07414-z.
    29. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Wantana, S. Kothan, S. ‎Kaewjaeng, Optical spectroscopy and emission properties of Ho3+-doped gadolinium ‎calcium silicoborate glasses for visible luminescent device applications, J. Non. Cryst. ‎Solids. 474 (2017) 50–57. Available online: ‎https://doi.org/10.1016/j.jnoncrysol.2017.08.018.
    30. Z.A. Said Mahraz, M.R. Sahar, S.K. Ghoshal, Band gap and polarizability of boro-‎tellurite glass: Influence of erbium ions, J. Mol. Struct. 1072 (2014) 238–241. Available ‎online: https://doi.org/10.1016/j.molstruc.2014.05.017.
    31. A.S. Alqarni, R. Hussin, S.K. Ghoshal, S.N. Alamri, Y.A. Yamusa, S.A. Jupri, Intense ‎red and green luminescence from holmium activated zinc-sulfo-boro-phosphate glass: ‎Judd-Ofelt evaluation, J. Alloys Compd. 808 (2019) 151706. Available online: ‎https://doi.org/10.1016/j.jallcom.2019.151706.
    32. ‎J. Dahiya, A. Hooda, A. Agarwal, S. Khasa, Effect of Dysprosium and Samarium RE ‎ion Co-doping on photoluminescence behaviour of novel al-kali fluoride bismuth borate ‎glasses: A white LED material, Opt. Mater. (Amst). 134 (2022) 113162. Available ‎online: https://doi.org/10.1016/j.optmat.2022.113162.
    33. V. Attri, S. Khasa, Structural, Electrical and Optical Analysis of Barium Boro-‎Bismuthate Glass System: Opto-Electronic Devices, ECS Trans. 107 (2022) 10957–‎‎10967. Available online: https://doi.org/10.1149/10701.10957ecst.
    34. R. Rohilla, M.S. Dahiya, A. Agarwal, S. Khasa, Influence of Sr2+ ions on structural, ‎optical and bioactive behaviour of phosphoborate glass system, J. Mol. Struct. 1291 ‎‎(2023) 136095. Available online: https://doi.org/10.1016/j.molstruc.2023.136095.
    35. ‎R. Rohilla, M.S. Dahiya, A. Hooda, A. Agarwal, S. Khasa, Effect of Li+ ions on ‎structural, optical and nano-crystallization behaviour of Na2O-CaO- P2O5-B2O3 glass ‎system: Biomedical applications, J. Non. Cryst. Solids. 593 (2022) 121774. Available ‎online: https://doi.org/10.1016/j.jnoncrysol.2022.121774..‎
    36. V. Attri, M.S. Dahiya, R. Kumar, A. Hooda, A. Agarwal, S. Khasa, Electrical, optical ‎and high energy radiation shielding study of TMI-doped multi-component glasses, J. ‎Mater. Sci. Mater. Electron. 34 (2023) 1–16. Available online: https://doi.org/10.1007/s10854-023-10625-1.
    37. ‎G.P. Singh, J. Singh, P. Kaur, T. Singh, R. Kaur, S. Kaur, D.P. Singh, Impact of TiO2 ‎on radiation shielding competencies and structural, physical and optical properties of ‎CeO2–PbO–B2O3 glasses, J. Alloys Compd. 885 (2021) 160939. Available online: ‎https://doi.org/10.1016/j.jallcom.2021.160939.
    38. ‎M. Malik, A. Khatri, A. Hooda, M.S. Dahiya, S. Khasa, Structural, spectroscopic and ‎electrical properties of iron doped oxyfluoride bismuth borate glasses, Mater. Res. Bull. ‎‎162 (2023) 112182. Available online: https://doi.org/10.1016/j.materresbull.2023.112182.‎
    39. ‎S.Y. Marzouk, M.A. Azooz, H.M. Elsaghier, Structural and optical properties of barium ‎titanium borate glasses doped with ytterbium, J. Mater. Sci. Mater. Electron. Available ‎online: https://doi.org/10.1007/s10854-022-08665-0.
    40. ‎P.N. Rao, C. Laxmi Kanth, D. Krishna Rao, N. Veeraiah, Influence of titanium ions on ‎optical properties of AF–PbO–B2O3 glasses, J. Quant. Spectrosc. Radiat. Transf. 95 ‎‎(2005) 373–386. Available online: https://doi.org/10.1016/j.jqsrt.2004.11.005.
    41. Y.S.M. Alajerami, S. Hashim, W.M.S. Wan Hassan, A.T. Ramli, the effect of titanium ‎oxide on the optical properties of lithium potassium borate glass, J. Mol. Struct. 1026 ‎‎(2012) 159–167.Available online: https://doi.org/10.1016/j.molstruc.2012.05.047.‎
    42. Manjeet, Ravina, Amit, K. Poria, N. Deopa, A. Kumar, R.P. Chahal, Optimization of ‎dysprosium ions doped borate glasses for photoluminescence applications, Mater. Lett. ‎X. 19 (2023) 100208. Available online: https://doi.org/10.1016/j.mlblux.2023.100208.
    43. T.A. Taha, Y.S. Rammah, Optical characterization of new borate glass doped with ‎titanium oxide, J. Mater. Sci. Mater. Electron. 27 (2016) 1384–1390. Available online: ‎https://doi.org/10.1007/s10854-015-3901-7.
    44. ‎S.G. Motke, S.P. Yawale, S.S. Yawale, Infrared spectra of zinc doped lead borate ‎glasses, Bull. Mater. Sci. 25 (2002) 75–78. Available online: ‎https://doi.org/10.1007/BF02704599.
    45. ‎S. Rada, E. Culea, M. Rada, P. Pascuta, V. Maties, Structural and electronic properties ‎of tellurite glasses, J. Mater. Sci. 44 (2009) 3235–3240. Available online: ‎https://doi.org/10.1007/s10853-009-3433-8.
    46. J. HEMATYAR, H. RASHIDI, M. ZAKERKISH, S.P. PAYAMI, S.B. ‎GHADERIAN, Original paper Original paper, Maedica A J. Clin. Med. 17 (2022) ‎‎1929–1938.‎ https://doi.org/10.26574/maedica.2022.17.4.762.
    47. ‎P. Narwal, M.S. Dahiya, A. Yadav, A. Hooda, A. Agarwal, S. Khasa, Dy3+ doped ‎LiCl–CaO–Bi2O3–B2O3 glasses for WLED applications, Ce-ram. Int. 43 (2017) 11132–‎‎11141. Available online: https://doi.org/10.1016/j.ceramint.2017.05.160.
    48. ‎J. Dahiya, A. Hooda, A. Agarwal, S. Khasa, Detailed optical analysis of Dy3+ and Pr3+ ‎co-doped alumino-borate glasses for visible lighting appli-cations, Ceram. Int. 49 (2023) ‎‎15284–15294. Available online: https://doi.org/10.1016/j.ceramint.2023.01.112.‎
    49. ‎W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide ‎aquo ions. III. Tb3+, J. Chem. Phys. 49 (1968) 4412–4423. Available online: ‎https://doi.org/10.1063/1.1669892.
    50. H.A. Thabit, A.K. Ismail, G. Jagannath, A. I., S. Hashim, M.I. Sayyed, Physical, ‎optical and spectroscopic characteristics investigation for doped Dy3+ borate glass ‎matrix, J. Non. Cryst. Solids. 608 (2023) 122258. Available online: https://doi.org/10.1016/j.jnoncrysol.2023.122258.
    51. M. Taj S., C. Devaraja, U. Deka, A review of boron oxide glasses infused with ‎individual oxides of lanthanide elements: For their physical, struc-tural, optical, and ‎gamma shielding properties, J. Alloys Compd. 1010 (2025) 178279. Available online: ‎https://doi.org/10.1016/j.jallcom.2024.178279.
    52. K. Kowalska, J. Pisarska, W.A. Pisarski, Yb3+-Doped Titanate–Germanate Glasses for ‎Near-IR Luminescence Applications: Synthesis, Characteri-zation, and the Influence of ‎TiO2 Concentration, Materials (Basel). 17 (2024). Available online: ‎https://doi.org/10.3390/ma17235874.
    53. ‎M.K. Halimah, M.N. Ami Hazlin, F.D. Muhammad, Experimental and theoretical ‎approach on the optical properties of zinc borotellurite glass doped with dysprosium ‎oxide, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 195 (2018) 128–135. ‎Available online: https://doi.org/10.1016/j.saa.2017.12.054.
    54. P. Srilakshmi, A. Uma Maheswari, V. Sajeev, M. Sivakumar, Tuning the optical ‎bandgap of V2O5 nanoparticles by doping transition metal ions, Mater. Today Proc. 18 ‎‎(2019) 1375–1379. Available online: https://doi.org/10.1016/j.matpr.2019.06.603.
    55. ‎T. Wang, T. Xu, Effects of vanadium doping on microstructures and optical properties ‎of TiO2, Ceram. Int. 43 (2017) 1558–1564. Available online: ‎https://doi.org/10.1016/j.ceramint.2016.10.132.
    56. E. Radha, D. Komaraiah, R. Sayanna, J. Sivakumar, Influence of dysprosium ions on ‎structural, optical, luminescence properties and photocatalytic ability of spin coated ‎dysprosium ions doped TiO2 thin films, Thin Solid Films. 761 (2022) 139519. Available ‎online: https://doi.org/10.1016/j.tsf.2022.139519.
    57. L.H.C. Andrade, S.M. Lima, A. Novatski, A.M. Neto, A.C. Bento, M.L. Baesso, ‎F.C.G. Gandra, Y. Guyot, G. Boulon, Spectroscopic assignments of Ti3+ and Ti4+ in ‎titanium-doped OH- free low-silica calcium aluminosilicate glass and role of structural ‎defects on the observed long lifetime and high fluorescence of Ti3+ ions, Phys. Rev. B - ‎Condens. Matter Mater. Phys. 78 (2008). Available online: ‎https://doi.org/10.1103/PhysRevB.78.224202.
    58. ‎A.S. Alqarni, I. Bulus, I.M. Danmallam, N.N. Yusof, Enhanced spectroscopic traits of ‎Eu3+/Dy3+ co-doped doro-telluro-borate glasses: Effect of silver nanoparticles ‎embedment, J. Non. Cryst. Solids. 608 (2023). Available online: ‎https://doi.org/10.1016/j.jnoncrysol.2023.122238.
    59. P.P. Pawar, S.R. Munishwar, S. Gautam, R.S. Gedam, Physical, thermal, structural and ‎optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED, J. ‎Lumin. 183 (2017) 79–88. ‎https://doi.org/10.1016/j.jlumin.2016.11.027.
  • Downloads

  • How to Cite

    Bishnoi, A. ., Duhan , M. ., & Khasa , S. . (2025). Synergistic Effect of Mixed Transition Metals and Rare Earth Doping on ‎Lithium Borate Glasses: A Structural and Optical Perspective. International Journal of Basic and Applied Sciences, 14(3), 373-384. https://doi.org/10.14419/25ecam43