Characteristic Analysis of Lithium Manganese Oxide Cathode Materials for Enhanced Lithium Ion Battery Performance
-
https://doi.org/10.14419/gnbb7866
Received date: July 12, 2025
Accepted date: August 26, 2025
Published date: September 16, 2025
-
Lithium Manganese Oxide; Electrochemical-Thermal Modeling; State of Charge (SOC). -
Abstract
In this work, we develop a comprehensive simulation approach to evaluate the performance of lithium-ion batteries using a LiMn₂O₄ (Lithium Manganese Oxide) cathode, aimed at supporting high-power electric vehicle (EV) applications. The framework integrates material selection, electrode design, and cell architecture with coupled electrochemical-thermal modeling. Electrode compositions are explicitly defined and implemented in a 3D equivalent-circuit model (RCRTable3D), further linked to thermal models to capture heat generation and dissipation. Simulations are conducted under realistic EV cycling conditions, using 1 A constant current charge–discharge cycles between 2.5 V and 3.34 V, with 10-minute rest periods at 25 °C under forced convection (100 W/m²·K). This setup replicates typical vehicle operation and thermal management scenarios. Key performance indicators—temperature evolution, voltage profiles, SOC (state of charge) trends, energy throughput, and early aging signs—are analyzed to evaluate design parameter influences. Results demonstrate how integrated modeling can optimize cell performance, refining electrode structures and cycling strategies. Overall, this simulation-based study provides insights for enhancing thermal stability, efficiency, and longevity of LMO-based lithium-ion batteries in high-demand applications.
-
References
- Nyamaa O., Jeong H.-M., Kang G.-H., Kim J.-S., Goo K.-M., Baek I.-G., Yang J.-H., Nam T.-H., Noh J.-P., “Enhanced LiMn₂O₄ cathode perfor-mance through synergistic cation and anion substitution”, Journal of Materials Advances, issue 7, 2872–2887, 2024, https://doi.org/10.1039/D3MA01187A.
- Pan B., Zhang H., Weng Y. “Improvement of electrochemical performance of spherical spinel LiMn₂O₄ coated with Al-doped ZnO (AZO)”, Inter-national Journal of Ionics-the science and technology of Ionic motion, Volume 30, pages 1359–1372,2024. link.springer.com+1en.wikipedia.org+1. https://doi.org/10.1007/s11581-024-05403-w.
- Liang P., Li Y., Xiao X., Fan S., Ma J., Liu J., Dong Y., Zong Y., Xu G., Yang L., “Large scale synthesis of LiMn₂O₄ via rheology-assisted solid-phase method with citric acid”, New Journal od chemistry ,issue 17, 7911–7920, 2024, https://doi.org/10.1039/D4NJ00767K.
- Yurilshmatok, Hanna Potapenka, Sviatoslav Kirillov, ”Optimal design of LiMn₂O₄ for high rate applications by citric acid aided route and micro-wave heating”, Journal of electro chemical science and engineering, 14(3), 369–382, 2024, https://doi.org/10.5599/jese.2253.
- Kong J., Guo H., Li Y., Gong M., Lin X., Zhang L., Wang D, ”Highly improved aqueous Zn‖LiMn₂O₄ hybrid-ion batteries using PEG and manga-nese sulfate additives ”, Sustainable energy & fuels, issue 4, 826–836, 2024, https://doi.org/10.1039/D3SE01295F.
- Zhang G., Zhang P., Kong S., Jin B., “Spinel LiMn₂O₄ as electrocatalyst toward solid state zinc–air batteries”, Journal of Catalysts, 13(5), 860, 2023, https://doi.org/10.3390/catal13050860.
- Urbi Pal, Binayak Roy, Meisam Hasanpoor, et al, “Developing a high performing spinel LiMn₂O₄ cathode with unique morphology, fast cycling and scaled manufacture, Journal of Batteries & Supercaps, volume 7, issue 6, 1-9 2024, https://doi.org/10.1002/batt.202400072.
- Yu Q., Li P., Guo Q. “Synthesis and properties of LiMn₂O₄ cathode material for lithium-ion batteries”, International Research Journal of Pure Ap-plied Chemistry., Vol 25, issue 3, 14-21, 2024, https://doi.org/10.9734/irjpac/2024/v25i3852.
- Gonzalez Rosillo J.C., Guc M., Liedke M.O., Butterling M., Attallah A.G., Hirschmann E., Wagner A., Izquierdo Roca V., Baiutti F., Morata A., Tarancon A., “Insights into LiMn₂O₄ cathode stability in aqueous electrolyte”, Chemistry of Materials, 36(12), 6144–6153, 2024, https://doi.org/10.1021/acs.chemmater.4c00888.
- He Z.Y., Ross N., Willenberg S., Juqu T., Carleschi E., Doyle B.P., “Boosting LiMn₂O₄ diffusion & stability via Fe/Mg doping and MWCNT micro-structure modulation”, Journal of Nanotechnology, 2024, Article 7020995, https://doi.org/10.1155/2024/7020995.
- Kim E., Lee J., Park J., Nam K.W., “Conductive MOF coating for suppressing Mn dissolution in LiMn₂O₄ for long life LIBs”, SSRN, 2024, https://doi.org/10.2139/ssrn.4799030.
- He Y. L., Gu Y. J., Chen Z. L., Ma X. Y., Wu F. Z., Dai X. Y., “Improved LiMn₂O₄ derived from MOFs by organic ligands”, New Journal of Chemistry, 47, 14068–14077, 2023, https://doi.org/10.1039/D3NJ02345A.
- Xiao X., Wang L., Wu Y., Song Y., Chen Z., He X., “Cathode regeneration and upcycling of spent LIBs: toward sustainability”, Energy & Envi-ronmental Science, 16(7), 2856–2868, 2023, https://doi.org/10.1039/D3EE00746D.
- Yang T., Luo D., Yu A., Chen Z., et al., “Enabling closed loop recycling of spent LIBs: direct cathode regeneration”, Advanced Materials, 35(36), 2023, https://doi.org/10.1002/adma.202203218.
- MacKenzie et al., “Direct conversion of waste battery cathodes to high volume capacity anodes”, Advanced Energy Materials, 13(22), 2023, https://doi.org/10.1002/aenm.202300596.
- Min H., Peng Z., Duan X., Teng L., Li J., Liu W., “Selective recovery of lithium from spent LIBs via emission free sulfation”, Process Safety and Environmental Protection, 177, 1035–1044, 2023, https://doi.org/10.1016/j.psep.2023.05.014.
- Fang W., Yan L., An Z., Xia H., “Study on different mass ratios of LiMn₂O₄//AC lithium ion capacitor”, Research Square, 2023.
- Abdelaal M.M., Alkhedher M., “Dual optimization of LiFePO₄ cathode using manganese substitution & PEDOT:PSS coating”, Electrochimica Ac-ta, 506, 145050, 2024, https://doi.org/10.1016/j.electacta.2024.145050.
- Nagappan N., Priyanga G.S., Thomas T., “Insights into alloying elements’ impact on predicted battery voltage in metal ion batteries”, Journal of En-ergy Storage, 103, 114412, 2024, https://doi.org/10.1016/j.est.2024.114412.
- Gao Y., Li J., Hua Y., Yang Q., et al., “Recent advances of metal fluoride cathode materials for LIBs”, Materials Futures, 3(3), 032101, 2024, https://doi.org/10.1088/2752-5724/ad4572.
- Sivasamy S., Vinod S., Balaji M., Rudhra S., Prabhu S., “Electrochemical and thermal characterization of the Li-NCM NM3100 cell for EV applica-tions”, International Journal of Environmental Sciences, 11(4), 947–961, 2025.
- Prabhu S., Vinod S., Rudhra S., Balaji M., “Green evaluation of Lithium Iron Phosphate (LFP) batteries: Environmental consequences of electro-chemical, thermal, and aging factors”, International Journal of Environmental Sciences, 11(3), 957–970, 2025.
- Satish Kumar S., Pramila V., Rudhra S., Vinod S., Lakshmi D., “Enhancing demand response and energy management in multi-microgrid systems with renewable energy sources”, Renewable Energy, 253, 2025, https://doi.org/10.1016/j.renene.2022.12.105.
- Vinod S., Balaji M., Rudhra S., Prabhu S., “Solar powered DC arc welding machine – an initiative towards efficient and sustainable energy”, Jour-nal of Environmental Protection and Ecology, 24(3), 888–894, 2023.
- Prabhu S., Vinod S., Rudhra S., Balaji M., “Model-Based Evaluation of Li–NCM Battery Performance for Environmentally Resilient Energy Sys-tems”, International Journal of Environmental Sciences, 11(5), 676–688, 2025. https://doi.org/10.1109/ICAEECI58247.2023.10370780.
- Madhaiyan, V., Murugesan, R., Sengottaiyan, S., Muniyan, V., Vijayakumar, A., & Sundaramoorthy, P. (2023). Analysis of performance for multi-level inverters utilizing different pulse width modulation techniques. Proceedings of the First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI), Tiruchengode, India, 1–7. https://doi.org/10.1109/ICAEECI58247.2023.10370780.
- Prabhu, S., & Balaji, M. (2022). Performance analysis of permanent magnet assisted outer rotor switched reluctance motor with non-oriented lami-nating material for electric transportation systems. Proceedings of the IEEE 2nd International Conference on Sustainable Energy and Future Elec-tric Transportation (SeFeT), Hyderabad, India, 1–6. https://doi.org/10.1109/SeFeT55524.2022.9909350.
- Sivasamy, S., Sundaramoorthy, P., & Beno, M. (2023). A comprehensive investigation of outer rotor permanent magnet switched reluctance motor for enhanced performance in electric vehicles. IEEE Canadian Journal of Electrical and Computer Engineering, 46(4), 342–347. https://doi.org/10.1109/ICJECE.2023.3316261.
- Prabhu, S., Arun, V., Balaji, M., Kalaimagal, V., Manikandan, A., & Chandrasekar, V. (2023). Electromagnetic analysis on interior permanent mag-net motor for electrified transportation systems. Proceedings of the 9th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 163–168. https://doi.org/10.1109/ICEES57979.2023.10110040.
- Madhaiyan, V., Murugesan, R., Arun, V., & Prabhu, S. (2023). Nine switch dual input 9-level inverter (NSDI9LI) with inherent AC voltage gener-ation ability. Proceedings of the First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI), Tiruchengode, India, 1–5. https://doi.org/10.1109/ICAEECI58247.2023.10370814.
-
Downloads
-
How to Cite
S, P., S, V., S, R. ., & M, B. (2025). Characteristic Analysis of Lithium Manganese Oxide Cathode Materials for Enhanced Lithium Ion Battery Performance. International Journal of Basic and Applied Sciences, 14(5), 558-566. https://doi.org/10.14419/gnbb7866
