Synchronization and Chaotic Dynamics of A Josephson Junction Shunted by A Negative Conductance
-
https://doi.org/10.14419/z35t2r98
Received date: July 11, 2025
Accepted date: August 26, 2025
Published date: October 9, 2025
-
Bifurcation and Chaos; Josephson Junction; Negative Conductance; Intermittency; Synchronization -
Abstract
This paper presents a theoretical and numerical investigation of the RCLSJ model (Resistively, Capacitively, and Inductively Shunted Junction), which is described by a nonlinear current source characterized by the current-phase relationship I_O (sin∅-α_1 sin2∅+α_2 sin3∅), coupled with a negative conductance. The rate equations governing the RCLSJ model reveal that, depending on the parameter regions, the system may either lack fixed points entirely or possess two or four fixed points. These regions are determined by the intensity of the negative conductance and the second-order harmonic term, under the assumption of a normalized critical current. Our analysis demonstrates that the presence of negative conductance suppresses certain hidden dynamical orders associated with periodic instabilities. Furthermore, the introduction of the third-order harmonic term significantly alters the nonlinear dynamics of the RCLSJ system. In addition, master-slave synchronization studies indicate that the third-order harmonic modifies synchronization frequencies by generating new resonance modes. For specific threshold values of α2, it enhances synchronization, while variations in the intensity of the negative conductance lead to higher-frequency oscillations. These different influences induced by the negative conductance and the third-order harmonic term of the junction suggest that the system could be used in the superconducting circuits for qubits, synchronized oscillators for the generation of THz signals, and also in computational neuroscience.
-
References
- Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y., Nori, F.: Microwave photonics with superconducting quantum circuit. Physics Reports. 718-719 (2017). https://doi.org/10.1016/j.physrep.2017.10.002.
- Bunyk, P. I., et al.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity 24, (2014). https://doi.org/10.1109/TASC.2014.2318294.
- Hwang, S., et al.: Type-I superconductor pick-up coil in superconducting quantum interference device-based ultra-low field nuclear magnetic reso-nance. Applied Physics Letters. 104, 6 (2014). https://doi.org/10.1063/1.4865497.
- Belykh, V. N., Pedersen, N. F., Soerensen O. H.: Shunted Josephson junction model II. The nonautonomous case. Phys. Rev B. 16, 4860 (1977). https://doi.org/10.1103/PhysRevB.16.4860.
- Belykh, V. N., Pedersen, N. F., Soerensen O. H.: Shunted Josephson junction model I. The autonomous case. Phys. Rev B. 16, 4853 (1977). https://doi.org/10.1103/PhysRevB.16.4853.
- Crutchfield, J. P., Farmer, J. D., Huberman, B. A.: Properties of fully developed chaos in one-dimensional maps. Phys. Rep. 92(2), 45 (1982). https://doi.org/10.1016/0370-1573(82)90089-8.
- Likharev, K. K.: Dynamics of Josephson junctions and circuits. Springer, New York (1986).
- Dana, S. K., Sengupta D. C., Edoh, D. K.: Chaotic dynamics in Josephson junction. IEEE Trans. Circuit Syst. I 48, 990 (2001). https://doi.org/10.1109/81.940189.
- Whan, C.B., Cawthorne A. B, Lobb, C. J.:Synchronization and phase locking in two-dimensional arrays of Josephson junction. Phys. Rev. B. 53, 12340 ( 1996). https://doi.org/10.1103/PhysRevB.53.12340.
- Cawthorne A. B, Whan, C.B., Lobb, C. J: Complex dynamics of resistively and inductively shunted Josepson junction. J. Apll. Phys. 84,1126-1132 (1998). https://doi.org/10.1063/1.368113.
- Yang, X. S., Li, Q. Chaos Solitons Fractals 27, 25 (2006). https://doi.org/10.1016/j.chaos.2005.04.017.
- Wu, D. W., Liu, C. R. J. Eng. Ind. 107,107 (2014).
- Chen, D. Y., Zhao, W. L., Ma, X. Y., Zhang, R. F. Comput. Math Appl. 61, 3161 ( 2011). https://doi.org/10.1016/j.camwa.2011.04.010.
- Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S. Nonlinear Dyn. 69, 35 (2011). https://doi.org/10.1007/s11071-011-0244-7.
- Chen, D. Y., Shi, L., Chen, H. T. Ma, X. Y. Nonlinear Dyn. 67, 1745 (2012). https://doi.org/10.1007/s11071-011-0102-7.
- Oseni, C. O. A., Monwanou, A. V.: Identical and reduced-order synchronization of some Josephson junction model. Eur. Phys. J. B. 95, 197 (2022). https://doi.org/10.1140/epjb/s10051-022-00462-2.
- Likharev, K. K.: Dynamics of Josephson junctions and circuits Gordon and breach. New York. 92.
- Ling, F. Y., Shen K.: Synchronization of chaos in resistive-capacitive-inductive shunted Josephson junctions. Chin. Phys. B 2 17, 550 (2008). https://doi.org/10.1088/1674-1056/17/2/033.
- Kakpo, M. A., Miwadinou, C. H.: Control of the chaotic dynamics of the RCLSJ model of the Josephson junction by the frequency of an excita-tion current and the internal resistance of a coil. Phys. Scr. 99, 085202 (2024). https://doi.org/10.1088/1402-4896/ad4ff0.
- Yokoi, M. et al.: Negative resistance state in superconducting NbSe2 induced by surface acoustic waves. SCIENCE ADVANCES.,6, 1377 (2020). https://doi.org/10.1126/sciadv.aba1377.
- Sergey, K. et al.: Band-selective third-harmonic generation in superconducting MgB2: Possible evidence for Higgs amplitude mode in the dirty limit . Phys. Rev. B 104, L140505 (2021).
- Seibold, G. et al.: Third-harmonic generation from collective modes in disordered superconductors. Phys. Rev. B 103, 014512 (2021). https://doi.org/10.1103/PhysRevB.103.014512.
- Pomalegni, G. F., Kakpo, M. A., Miwadinou, C. H.: Nonlinear dynamics and synchronization of an excited Josephson junction. J. Nonlinear Sci. Apll., 18, 225-238 (2025. https://doi.org/10.22436/jnsa.018.04.01.
-
Downloads
-
How to Cite
Pomalegni, G. F. ., Kakpo, M. A. ., & Miwadinou, C. H. (2025). Synchronization and Chaotic Dynamics of A Josephson Junction Shunted by A Negative Conductance. International Journal of Basic and Applied Sciences, 14(6), 169-181. https://doi.org/10.14419/z35t2r98
