Comparative Efficiency Analysis of High-Speed Cross-Belt Sorters Using The SCOR ‎Model: A Case Study from India’s Courier Network

  • Authors

    • P. Kranthi Research Scholar, Department of Management, Koneru Lakshmaiah Education Foundation ‎, Deemed to University, Off Campus, Hyderabad, India
    • Dr. M Geeta Associate Professor, Department of Management, Koneru Lakshmaiah Education Foundation, ‎Deemed to University, Off Campus, Hyderabad, India
    • Dr. C.N. Udaya Shankar Professor, Indus Business Academy, Bangalore, India
    • Dr. Ranjith. P. V Professor, School of Management, Operations and Supply Chain Area, Presidency University, ‎Bangalore
    • Dr. Kiran Kumar Thoti Associate Professor, Department of Operations & Logistics, M.S. Ramaiah Institute of ‎Management, Bangalore, India- 560054, ORCID: 0000-0002-6678-9425
    • Mrs. Niharika ‎ Mishra Senior Assistant Professor, Marketing and International Business, M.S. Ramaiah Institute of ‎Management, Bangalore, India, ORCID: 0000-0002-6533-4568‎
    https://doi.org/10.14419/7bnz2v49

    Received date: July 10, 2025

    Accepted date: August 12, 2025

    Published date: August 28, 2025

  • Cross-Belt Sorter; Logistics Automation; SCOR Model; Delivery Efficiency; Warehouse ‎Optimization; Industry 4.0‎.
  • Abstract

    The heightened need for rapid and accurate parcel delivery has resulted in the extensive ‎implementation of automated technologies in logistics. This study assesses the operational ‎efficiency and scalability of high-speed cross-belt sorters in comparison to manual sorting ‎methods. This research analyses a case study from Bangalore, India, to evaluate the efficacy ‎of the ZedSORT system compared to manual methods on throughput, labour dependency, ‎cost-effectiveness, and scalability. Quantitative figures indicate a substantial augmentation ‎in daily capacity (from 20,000 to 160,000 parcels), reduced labour needs, and enhanced real-time tracking and interaction with warehouse management systems. This research, based on ‎the SCOR model and Industry 4.0 framework, provides practical insights and proposes a ‎paradigm for the implementation of scalable automation in logistics operations. The findings ‎enhance the discourse on the digital revolution of supply chains, offering lessons for both ‎practitioners and researchers‎.

  • References

    1. Ada, N., Ethirajan, M., Kumar, A., K.E.K, V., Nadeem, S. P., Kazançoğlu, Y., & Kandasamy, J. (2021). Blockchain Technology for Enhancing Traceability and Efficiency in Automobile Supply Chain—A Case Study. Sustainability, 13(24), 13667. https://doi.org/10.3390/su132413667.
    2. Ahmed, Z. (2019). Automatic Parcel Sorting System based on PLC. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 14(2). https://doi.org/10.26782/jmcms.2019.04.00026.
    3. Allgor, R. J., Çezik, T., & Chen, D. C. (2023). Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively. INFORMS Journal on Applied Analytics, 53(4), 266. https://doi.org/10.1287/inte.2022.1143.
    4. Almtireen, N., Reddy, V. S. N., Sutton, M. R., Nedvidek, A., Karn, C., Ryalat, M., ElMoaqet, H., & Rawashdeh, N. A. (2025). PLC-Controlled Intel-ligent Conveyor System with AI-Enhanced Vision for Efficient Waste Sorting. Applied Sciences, 15(3), 1550. https://doi.org/10.3390/app15031550.
    5. Azadeh, K., Koster, R. de, & Roy, D. (2019). Robotized and Automated Warehouse Systems: Review and Recent Developments. Transportation Sci-ence, 53(4), 917. https://doi.org/10.1287/trsc.2018.0873.
    6. Banur, O. M., Patle, B. K., & Pawar, S. S. (2024). Integration of robotics and automation in supply chain: a comprehensive review [Review of Inte-gration of robotics and automation in supply chain: a comprehensive review]. Robotic Systems and Applications, 4(1), 1. https://doi.org/10.21595/rsa.2023.23349.
    7. Burinskienė, A., & Lerher, T. (2021). Improving Retail Warehouse Activity by Using Product Delivery Data. Processes, 9(6), 1061. https://doi.org/10.3390/pr9061061.
    8. Chaudhari, P., Xiao, Y., Cheng, M. M., & Li, T. (2024). Fundamentals, Algorithms, and Technologies of Occupancy Detection for Smart Buildings Using IoT Sensors. Sensors, 24(7), 2123. https://doi.org/10.3390/s24072123.
    9. Cong, Z. (2015). Improvement Research PLC Automatic Control System Based on Small and Medium Logistics Classification. Automation Control and Intelligent Systems, 3(6), 124. https://doi.org/10.11648/j.acis.20150306.15.
    10. Ferreira, J. C., & Esperança, M. (2025). Enhancing Sustainable Last-Mile Delivery: The Impact of Electric Vehicles and AI Optimization on Urban Logistics. World Electric Vehicle Journal, 16(5), 242. https://doi.org/10.3390/wevj16050242.
    11. Gao, X., & Liu, L. (2020). Green Intelligent Logistics Sorting System in Big Data Environment. IOP Conference Series Materials Science and Engi-neering, 711(1), 12040. https://doi.org/10.1088/1757-899X/711/1/012040.
    12. Gautam, N., & Geunes, J. (2023). Analysis of Real-Time Order Fulfillment Policies: When to Dispatch a Batch? Service Science. https://doi.org/10.1287/serv.2022.0042.
    13. Geest, M. van, Teki̇nerdoğan, B., & Catal, C. (2021). Smart Warehouses: Rationale, Challenges and Solution Directions. Applied Sciences, 12(1), 219. https://doi.org/10.3390/app12010219.
    14. Grznár, P., Gregor, M., Mozol, Š., Schickerle, M., Vavrík, V., & Mozolová, L. (2020). OPTIMIZATION OF LOGISTICS PROCESS IN CON-TEXT OF SMART LOGISTICS BY USING COMPUTER SIMULATION – CASE STUDY. Proceedings of CBU in Economics and Business, 1, 84. https://doi.org/10.12955/peb.v1.23.
    15. Industrial Process Improvement by Automation and Robotics. (2023). In MDPI eBooks.
    16. Johnson, M. E. (1998). The impact of sorting strategies on automated sortation system performance. IIE Transactions, 30(1), 67. https://doi.org/10.1080/07408179808966438.
    17. Junaina, T. K. A., Abishek, B. E., Rajendren, V., Shakir, M., & Kumar, P. (2020). A Survey on Fresh Produce Grading Algorithms Using Machine Learning and Image Processing Techniques. IOP Conference Series Materials Science and Engineering, 981(4), 42084. https://doi.org/10.1088/1757-899X/981/4/042084.
    18. Kia, S., & Leiding, B. (2025). Intelligent Monitoring of BECS Conveyors via Vision and the IoT for Safety and Separation Efficiency. Applied Sci-ences, 15(11), 5891. https://doi.org/10.3390/app15115891.
    19. Klumpp, M., & Loske, D. (2021). Order Picking and E-Commerce: Introducing Non-Parametric Efficiency Measurement for Sustainable Retail Lo-gistics. Journal of Theoretical and Applied Electronic Commerce Research, 16(4), 846. https://doi.org/10.3390/jtaer16040048.
    20. Kumar, S. N. (2021). Application of Smart Grid and Edge Computing Technologies to Improve the Operational Efficiency of The Supply Chain and Logistics Processes. Shanlax International Journal of Management, 9(2), 89. https://doi.org/10.34293/management.v9i2.4331.
    21. Küppers, B., Schlögl, S. M., Friedrich, K., Lederle, L., Pichler, C., Freil, J., Pomberger, R., & Vollprecht, D. (2020). Influence of material alterations and machine impairment on throughput related sensor-based sorting performance. Waste Management & Research the Journal for a Sustainable Circu-lar Economy, 39(1), 122. https://doi.org/10.1177/0734242X20936745.
    22. Li, F. (2022). Logistics Distribution Path Optimization Algorithm Based on Intelligent Management System. Computational Intelligence and Neuro-science, 2022, 1. https://doi.org/10.1155/2022/3699990.
    23. Liu, X. (2024). The Existing Problems and Model Analysis of Supply Chain Management in Traditional Chain Retail Enterprises ---- Take Walmart as an Example. Advances in Economics Management and Political Sciences, 93(1), 80. https://doi.org/10.54254/2754-1169/93/20241084.
    24. Lu, W., & Chen, J. (2022). Computer vision for solid waste sorting: A critical review of academic research [Review of Computer vision for solid waste sorting: A critical review of academic research]. Waste Management, 142, 29. Elsevier BV. https://doi.org/10.1016/j.wasman.2022.02.009.
    25. Maier, G., Pfaff, F., Wagner, M., Pieper, C., Gruna, R., Noack, B., Kruggel‐Emden, H., Längle, T., Hanebeck, U. D., Wirtz, S., Scherer, V., & Bey-erer, J. (2017). Real-time multitarget tracking for sensor-based sorting. Journal of Real-Time Image Processing, 16(6), 2261. https://doi.org/10.1007/s11554-017-0735-y.
    26. Melo, A. F., & Corneal, L. (2020). Case study: evaluation of the automation of material handling with mobile robots. International Journal of Quality Innovation, 6(1). https://doi.org/10.1186/s40887-020-00037-y.
    27. Mohsen, B. M. (2024). AI-Driven Optimization of Urban Logistics in Smart Cities: Integrating Autonomous Vehicles and IoT for Efficient Delivery Systems. Sustainability, 16(24), 11265. https://doi.org/10.3390/su162411265.
    28. Nagpal, G., Bishnoi, G. K., Dhami, H. S., & Vijayvargia, A. (2020). Use of Data Analytics to Increase the Efficiency of Last Mile Logistics for Ecommerce Deliveries. In Advances in data mining and database management book series (p. 167). IGI Global. https://doi.org/10.4018/978-1-7998-3053-5.ch009.
    29. Nieoczym, A., Caban, J., Marczuk, A., & Brumerčík, F. (2018). Construction design of apple sorter. BIO Web of Conferences, 10, 2025. https://doi.org/10.1051/bioconf/20181002025.
    30. Niu, J., Bi, M., & Yu, Q. (2025). Apple Pose Estimation Based on SCH-YOLO11s Segmentation. Agronomy, 15(4), 900. https://doi.org/10.3390/agronomy15040900.
    31. Pečený, L., Meško, P., Kampf, R., & Gašparík, J. (2020). Optimisation in Transport and Logistic Processes. Transportation Research Procedia, 44, 15. https://doi.org/10.1016/j.trpro.2020.02.003.
    32. Pfaff, F., Maier, G., Aristov, M., Noack, B., Gruna, R., Hanebeck, U. D., Längle, T., Beyerer, J., Pieper, C., Kruggel‐Emden, H., Wirtz, S., & Scher-er, V. (2017). Real-time motion prediction using the chromatic offset of line scan cameras. At - Automatisierungstechnik, 65(6), 369. https://doi.org/10.1515/auto-2017-0009.
    33. Ponis, S. T., Plakas, G., Agalianos, K., Aretoulaki, E., Gayialis, S. P., & Andrianopoulos, A. (2020). Augmented Reality and Gamification to Increase Productivity and Job Satisfaction in the Warehouse of the Future. Procedia Manufacturing, 51, 1621. https://doi.org/10.1016/j.promfg.2020.10.226.
    34. Quanz, B., Deshpande, A., Xing, D., & Liu, X. (2021). Learning to shortcut and shortlist order fulfillment deciding. arXiv (Cornell University).
    35. Raj, G. C., Roy, D., Koster, R. de, & Bansal, V. (2024). Stochastic modeling of integrated order fulfillment processes with delivery time promise: Or-der picking, batching, and last-mile delivery. European Journal of Operational Research, 316(3), 1114. https://doi.org/10.1016/j.ejor.2024.03.003.
    36. Ran, W., Hai-xia, B., & Ma, R. (2021). Design of Intelligent Robot Flexible Sorting Center. Journal of Physics Conference Series, 2002(1), 12041. https://doi.org/10.1088/1742-6596/2002/1/012041.
    37. Sathyanarayana, G., & Patro, A. (2020). Intelligent Warehouse Allocator for Optimal Regional Utilization. arXiv (Cornell University). https://arxiv.org/pdf/2007.05081.pdf.
    38. Seng, N. W., & Ghani, A. S. A. (2019). Vision Based Smart Sorting Machine. In Lecture notes in mechanical engineering (p. 13). Springer Nature. https://doi.org/10.1007/978-981-13-8323-6_2.
    39. Shuaibu, A. S., Mahmoud, A., & Sheltami, T. (2025). A Review of Last-Mile Delivery Optimization: Strategies, Technologies, Drone Integration, and Future Trends [Review of A Review of Last-Mile Delivery Optimization: Strategies, Technologies, Drone Integration, and Future Trends]. Drones, 9(3), 158. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/drones9030158.
    40. Soni, Y., & Gupta, R. (2020). Optimization in logistics for supply chain management of an automobile industry using Fuzzy DEMATEL matrix meth-od. Journal of Sustainable Development of Transport and Logistics, 5(2), 29. https://doi.org/10.14254/jsdtl.2020.5-2.3.
    41. Tajima, E., Suzuki, M., Ishigaki, A., Hamada, M., & Kawai, W. (2020). Effect of picker congestion on travel time in an order picking operation. Jour-nal of Advanced Mechanical Design Systems and Manufacturing, 14(5). https://doi.org/10.1299/jamdsm.2020jamdsm0072.
    42. Tırkolaee, E. B., Sadeghi, S., Mooseloo, F. M., Vandchali, H. R., & Aeini, S. (2021). Application of Machine Learning in Supply Chain Manage-ment: A Comprehensive Overview of the Main Areas. Mathematical Problems in Engineering, 2021, 1. https://doi.org/10.1155/2021/1476043.
    43. Vandana, S., Sai, K. S. S., Rohila, P., & Manideep, V. (2021). PLC Operated Colour Based Product Sorting machine. IOP Conference Series Materi-als Science and Engineering, 1119(1), 12016. https://doi.org/10.1088/1757-899X/1119/1/012016.
    44. Varsha, J. S., Sanjana., R., Priyanka, J. S., Manasa, M., & Sandeep, R. (2021). Automated Waste Sorter with Robotic ARM using Arduino UNO. In-ternational Journal of Engineering Research And, 10(7). https://www.ijert.org/research/automated-waste-sorter-with-robotic-arm-using-arduino-uno-IJERTV10IS070174.pdf.
    45. Wilts, H., Garcia, B. R., Garlito, R. G., Gómez, L. S., & Prieto, E. G. (2021). Artificial Intelligence in the Sorting of Municipal Waste as an Enabler of the Circular Economy. Resources, 10(4), 28. https://doi.org/10.3390/resources10040028.
    46. Wu, W., Cheung, C., Lo, S. Y., Zhong, R. Y., & Huang, G. Q. (2020). An IoT-enabled Real-time Logistics System for A Third-Party Company: A Case Study. Procedia Manufacturing, 49, 16. https://doi.org/10.1016/j.promfg.2020.06.005.
    47. Zhao, T., Lin, X., He, F., & Dai, H. (2024). Robotic Sorting Systems: Robot Management and Layout Design Optimization. arXiv (Cornell Universi-ty).
    48. Živičnjak, M., Rogić, K., & Bajor, I. (2022). Case-study analysis of warehouse process optimization. Transportation Research Procedia, 64, 215. https://doi.org/10.1016/j.trpro.2022.09.026.
  • Downloads

  • How to Cite

    Kranthi , P. ., Geeta , D. M. ., Shankar , D. C. U. ., V, D. R. P. ., Thoti , D. K. K. ., & Mishra, M. N. ‎ . (2025). Comparative Efficiency Analysis of High-Speed Cross-Belt Sorters Using The SCOR ‎Model: A Case Study from India’s Courier Network. International Journal of Basic and Applied Sciences, 14(4), 786-794. https://doi.org/10.14419/7bnz2v49