Secure Audio Watermarking Using Randomized ‎Timestamps and Encrypted Metadata

  • Authors

    • Ashish Dixit Post Doctoral Fellowship (Computer Science& Engineering) Lincoln University College, Malaysia and Associate Professor (Computer Science& Engineering), Ajay Kumar Garg Engineering College, Ghaziabad, U.P., India
    • Avadhesh Kumar Gupta Professor, School of Computer Science and Engineering, IILM University, Greater Noida (U.P.) – India
    • Veena Bharti Associate Professor (Computer Science) Raj Kumar Goel Institute of Technology, Ghaziabad, U.P., India
    • Divya Midhunchakkaravarthy Professor & Director, School of AI Computing and Multimedia, Lincoln University College, Selangor, Malaysia
    • Deepak Gupta Assistant Professor, Maharaja Agrasen Institute of Technology, Delhi, India
    https://doi.org/10.14419/0h4c8497

    Received date: July 6, 2025

    Accepted date: August 17, 2025

    Published date: October 3, 2025

  • Audio Watermarking; Randomized Timestamps; Fast Fourier Transform (FFT); Metadata Encryption; Signal-to-Noise Ratio (SNR); Bit ‎Error Rate (BER)‎.
  • Abstract

    A robust watermarking system for strengthening audio against unauthorized access and tampering is proposed in this paper. The system can ensure robustness and imperceptibility by embedding watermarks to random time instants in the frequency domain with the help of ‎FFT and encrypting the metadata by AES encryption. Thorough evaluations based on SNR, MOS, and extraction accuracy confirm ro-‎robustness of the system against common attacks such as noise, compression, and resampling. The novel system is applicable in the field of ‎digital rights management by offering a trustworthy and efficient solution for audio authentication and copyright protection‎.

  • References

    1. Dixit, A., Agarwal, R. P., & Sharma, B. K. (2023, May). Hybridization of Discrete Cosine Transform and Principal Component Analysis to Achieve Digital Watermarking. In 2023 International Conference on Disruptive Technologies (ICDT) (pp. 527-530). IEEE. https://doi.org/10.1109/ICDT57929.2023.10151330.
    2. Hung, T. Y., Chen, Z., & Tan, Y. P. (2011). Packet scheduling with playout adaptation for scalable video delivery over wireless networks. Journal of Visual Communication and Image Representation, 22(6), 491-503. https://doi.org/10.1016/j.jvcir.2011.06.001.
    3. Borkowski, S., & Tylkowski, M. (2017). Robust Audio Watermarking Using Singular Value Decomposition and Genetic Algorithm. Journal of In-formation Security and Applications, 35, 67-75. https://doi.org/10.1016/j.jisa.2017.06.005.
    4. Petitcolas, F. A., Anderson, R. J., & Kuhn, M. G. (2002). Information hiding-a survey. Proceedings of the IEEE, 87(7), 1062-1078. https://doi.org/10.1109/5.771065.
    5. Mallat, S. (1999). A wavelet tour of signal processing. Elsevier. https://doi.org/10.1016/B978-012466606-1/50008-8.
    6. Fatima, N., Ameen, A., & Raziuddin, S. (2016). STQP: Spatio-Temporal Indexing and Query Processing. International Journal of Computer Appli-cations, 150(10). https://doi.org/10.5120/ijca2016911514.
    7. Nazerian, F., Motameni, H., & Nematzadeh, H. (2019). Emergency role-based access control (E-RBAC) and analysis of model specifications with alloy. Journal of information security and applications, 45, 131-142. https://doi.org/10.1016/j.jisa.2019.01.008.
    8. Dixit, A., Sharma, B. K., Pathak, N. K., Kaur, G., Singh, S., & Gupta, A. K. (2024, March). Unobtrusive Watermarking for Copyright Preservation and Authenticity Verification in Digital Images Using Hybrid HVS-Based Technique. In 2024 2nd International Conference on Disruptive Tech-nologies (ICDT) (pp. 265-268). IEEE. https://doi.org/10.1109/ICDT61202.2024.10489435.
    9. Cox, I. J., & Miller, M. L. (2002). The first 50 years of electronic watermarking. EURASIP Journal on Advances in Signal Processing, 2002(2), 820936. https://doi.org/10.1155/S1110865702000525.
    10. Potdar, V. M., Han, S., & Chang, E. (2005, August). A survey of digital image watermarking techniques. In INDIN'05. 2005 3rd IEEE Interna-tional Conference on Industrial Informatics, 2005. (pp. 709-716). IEEE. https://doi.org/10.1109/INDIN.2005.1560462.
    11. Wolfgang, R. B., Podilchuk, C. I., & Delp, E. J. (2002). Perceptual watermarks for digital images and video. Proceedings of the IEEE, 87(7), 1108-1126. https://doi.org/10.1109/5.771067.
    12. Hartung, F., & Kutter, M. (2002). Multimedia watermarking techniques. Proceedings of the IEEE, 87(7), 1079-1107. https://doi.org/10.1109/5.771066.
    13. Siohan, P., Siclet, C., & Lacaille, N. (2002). Analysis and design of OFDM/OQAM systems based on filterbank theory. IEEE transactions on signal processing, 50(5), 1170-1183. https://doi.org/10.1109/78.995073.
    14. Swanson, M. D., Kobayashi, M., & Tewfik, A. H. (1998). Multimedia data-embedding and watermarking technologies. Proceedings of the IEEE, 86(6), 1064-1087. https://doi.org/10.1109/5.687830.
    15. Bender, W., Gruhl, D., Morimoto, N., & Lu, A. (1996). Techniques for data hiding. IBM systems journal, 35(3.4), 313-336. https://doi.org/10.1147/sj.353.0313.
    16. Barni, M., Bartolini, F., De Rosa, A., & Piva, A. (2001). A new decoder for the optimum recovery of nonadditive watermarks. IEEE transactions on image processing, 10(5), 755-766. https://doi.org/10.1109/83.918568.
    17. Cox, I. J., Kilian, J., Leighton, F. T., & Shamoon, T. (1997). Secure spread spectrum watermarking for multimedia. IEEE transactions on image processing, 6(12), 1673-1687. https://doi.org/10.1109/83.650120.
  • Downloads

  • How to Cite

    Dixit , A. ., Gupta , A. K. ., Bharti , V. ., Midhunchakkaravarthy , D. ., & Gupta, D. . (2025). Secure Audio Watermarking Using Randomized ‎Timestamps and Encrypted Metadata. International Journal of Basic and Applied Sciences, 14(6), 29-37. https://doi.org/10.14419/0h4c8497