Enhanced Wavelet Block Shrinkage Technique For Mammogram Denoising Using K-Means Clustering And Neural Networks
-
https://doi.org/10.14419/8psp9843
Received date: July 6, 2025
Accepted date: August 17, 2025
Published date: August 25, 2025
-
Enhanced Wavelet Block Shrink, Wavelet Shrinkage, K-Means Clustering, Convolutional Neural Network, Digital Mammogram Denoising, Breast Cancer -
Abstract
The proposed research study introduces a novel approach for denoising digital mammograms by improving the existing wavelet block shrinkage filtering method with K-Means clustering and a convolutional neural network. This approach involves decomposing both the original and noisy mammograms into frequency subbands using 2D discrete wavelet transformation. The resulting subbands are then grouped into multiple clusters based on similar features of the wavelet coefficients, employing K-Means clustering. This represents an improvement over the traditional block shrinkage method, which uses fixed-size blocks. These clusters from the original and noisy mammograms are paired to train a convolutional neural network, which serves as an optimal shrinkage function. This neural network-based thresholding mechanism replaces traditional hard and soft thresholding methods that rely on a universal threshold. Test results demonstrate that the proposed enhanced wavelet block shrinkage mechanism achieves a 20% improvement in peak signal-to-noise ratio and a 5% increase in structural similarity index score compared to traditional wavelet block shrinkage.
-
References
- Bray, F., Ferlay, J., Laversanne, M., Soerjomataram, I., Jemal, A., & Torre, L. A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74, 229–263. https://doi.org/10.3322/caac.21834
- Kuroishi, T., Hirose, K., Suzuki, T., Tominaga, S., & Takashima, S. (1992). The effect of breast self-examination on early detection and survival. Japanese Journal of Cancer Research, 83, 344–350. https://doi.org/10.1111/j.1349-7006.1992.tb00113.x
- Chen, L., Linden, H. M., Anderson, B. O., & Li, C. I. (2014). Trends in 5-year survival rates among breast cancer patients by hormone receptor sta-tus and stage. Breast Cancer Research and Treatment, 147, 609–616. https://doi.org/10.1007/s10549-014-3112-6
- Aristokli, N., Polycarpou, I., Themistocleous, S. C., Sophocleous, D., & Mamais, I. (2022). Comparison of the diagnostic performance of magnetic resonance imaging (MRI), ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient’s history: A review. Radiography, 28, 848–856. https://doi.org/10.1016/j.radi.2022.01.006
- Jung, H., Ryu, S., Kim, S., Kim, J. H., & Kim, J. G. (2019). Effect of digital mammography for breast cancer screening: A comparative study of more than 8 million Korean women. Radiology, 293, 48–54. https://doi.org/10.1148/radiol.2019190951
- Warren, L. M., Mackenzie, A., Given-Wilson, R., & Wallis, M. G. (2012). Effect of image quality on calcification detection in digital mammogra-phy. Medical Physics, 39, 3202–3213. https://doi.org/10.1118/1.4718571
- Huda, W., Ogden, K. M., Scalzetti, E. M., Dance, D. R., & Bertrand, E. A. (2006). How do lesion size and random noise affect detection perfor-mance in digital mammography? Academic Radiology, 13, 1355–1366. https://doi.org/10.1016/j.acra.2006.07.011
- Iflaq, P., Wilczek, M., Bell, D., et al. (2025). Dead pixel artifact. Radiopaedia. https://doi.org/10.53347/rID-98016
- Saunders, R. S., Baker, J. A., Delong, D. M., Johnson, J. P., & Samei, E. (2007). Does image quality matter? Impact of resolution and noise on mammographic task performance. Medical Physics, 34, 3971–3981. https://doi.org/10.1118/1.2776253
- Pereira, L., et al. (2021). Biological effects induced by doses of mammographic screening. Physica Medica, 87, 90–98. https://doi.org/10.1016/j.ejmp.2021.06.002
- Cahn, R. N., Cederström, B., Danielsson, M., Hall, A., Lundqvist, M., & Nygren, D. (1999). Detective quantum efficiency dependence on x-ray energy weighting in mammography. Medical Physics, 26, 2680–2683. https://doi.org/10.1118/1.598807
- da Costa Junior, C. A., & Patrocinio, A. C. (2019). Performance evaluation of denoising techniques applied to mammograms of dense breasts. In XXVI Brazilian Congress on Biomedical Engineering (pp. 369–374). Springer. https://doi.org/10.1007/978-981-13-2119-1_58
- Nazir, N., Sarwar, A., & Saini, B. S. (2024). Recent developments in denoising medical images using deep learning: An overview of models, tech-niques, and challenges. Micron, 180, 103615. https://doi.org/10.1016/j.micron.2024.103615
- Cai, T. T., & Silverman, B. W. (2001). Incorporating information on neighboring coefficients into wavelet estimation. Sankhyā: The Indian Journal of Statistics, Series A, 63, 127–148. http://www.jstor.org/stable/25053168
- Dewangan, P., & Goswami, R. (2012). Adaptive wavelet thresholding for image denoising using various shrinkage under different noise conditions. International Journal of Engineering Research and Technology, 1(4), 1–5.
- Zhang, X., Burger, M., Bresson, X., & Osher, S. (2010). Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 3, 253–276. https://doi.org/10.1137/090746379
- Rahman, W. T., & Helvie, M. A. (2022). Breast cancer screening in average and high-risk women. Best Practice & Research Clinical Obstetrics & Gynaecology, 83, 3–14. https://doi.org/10.1016/j.bpobgyn.2021.11.007
- Perez, A. M. M. M., Lopes, L. A. S., Caron, R. F., Oliveira, B. B., & Poletti, M. E. (2024). Performance evaluation of six digital mammography sys-tems. Radiation Physics and Chemistry, 218, 111635. https://doi.org/10.1016/j.radphyschem.2024.111635
- Kumar, A., Kumar, P., & Srivastava, A. (2022). A skewness reformed complex diffusion based unsharp masking for the restoration and enhance-ment of poisson noise corrupted mammograms. Biomedical Signal Processing and Control, 73, 103421. https://doi.org/10.1016/j.bspc.2021.103421
- Ghazdali, A., Hadri, A., & Laghrib, A. (2024). Poisson noise and Gaussian noise separation through copula theory. Multimedia Tools and Applica-tions, 83, 67927–67952. https://doi.org/10.1007/s11042-023-17898-y
- Pashaei, E., & Pashaei, E. (2023). Gaussian quantum arithmetic optimization-based histogram equalization for medical image enhancement. Multi-media Tools and Applications, 82, 34725–34748. https://doi.org/10.1007/s11042-023-15025-5
- Cederström, B., Svensson, B., Danielsson, M., & Fredenberg, E. (2014). The influence of anatomical noise on optimal beam quality in mammogra-phy. Medical Physics, 41, 071910. https://doi.org/10.1118/1.4900611
- Chowdappa, A., & Sheshadri, H. (2018). Probabilistic identification and estimation of noise: Application to MR images. Biomedical and Pharma-cology Journal, 11, 2101–2110. https://doi.org/10.13005/bpj/1589
- Arias-Castro, E., & Donoho, D. L. (2006). Does median filtering truly preserve edges better than linear filtering? arXiv. https://arxiv.org/abs/math/0612422
- Bhateja, V., Misra, M., & Urooj, S. (2020). Non-linear enhancement techniques for mammograms. In Non-linear filters for mammogram enhance-ment (pp. 137–160). Springer. https://doi.org/10.1007/978-981-15-0442-6_7
- Carnahan, M. B., et al. (2023). False-positive and false-negative contrast-enhanced mammograms: Pitfalls and strategies to improve cancer detec-tion. RadioGraphics, 43, e230100. https://doi.org/10.1148/rg.230100
- Amiriebrahimabadi, M., Rouhi, Z., & Mansouri, N. (2024). A comprehensive survey of multi-level thresholding segmentation methods for image processing. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-024-10093-8
- Mencattini, A., Salmeri, M., Lojacono, R., & Caselli, F. (2006). Mammographic images enhancement and denoising for microcalcification detection using dyadic wavelet processing. In Proceedings of the IEEE instrumentation and measurement technology conference (IMTC) (pp. 49–53). https://doi.org/10.1109/IMTC.2006.328171
- Vikhe, P. S., & Thool, V. R. (2019). A wavelet and adaptive threshold-based contrast enhancement of masses in mammograms for visual screening. International Journal of Biomedical Engineering and Technology, 31, 31–53
- Eckert, D., Vesal, S., Ritschl, L., Kappler, S., & Maier, A. (2019). Deep learning-based denoising of mammographic images using physics-driven data augmentation. arXiv preprint. https://arxiv.org/abs/1912.05240
- Singh, G., Mittal, A., & Aggarwal, N. (2019). Deep convolution neural network based denoiser for mammographic images. In Advances in compu-ting and data sciences (pp. 187–197). Springer. https://doi.org/10.1007/978-981-13-9939-8_16
- Ghosh, S. K., Biswas, B., & Ghosh, A. (2020). Restoration of mammograms by using deep convolutional denoising auto-encoders. In Computa-tional intelligence in data mining (pp. 429–440). Springer. https://doi.org/10.1007/978-981-13-8676-3_38
- Benhassine, N. E., Boukaache, A., & Boudjehem, D. (2021). Medical image denoising using optimal thresholding of wavelet coefficients with se-lection of the best decomposition level and mother wavelet. International Journal of Imaging Systems and Technology, 31, 1906–1920. https://doi.org/10.1002/ima.22589
- Do, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density. IEEE Transactions on Image Processing, 11, 146–158. https://doi.org/10.1109/83.982822
- Pizurica, A., & Philips, W. (2006). Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Transactions on Image Processing, 15, 654–665. https://doi.org/10.1109/TIP.2005.863021
- Starck, J., Murtagh, F., & Candes, E. (2008). Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Transactions on Image Processing, 17, 1093–1108. https://doi.org/10.1109/TIP.2008.924386
- Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, W. P. (2000). The digital database for screening mammography. In Digital mam-mography (pp. 212–218). Springer. http://dx.doi.org/10.1007/978-94-011-5318-8_75
- Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans-actions on Image Processing, 16(8), 2080–2095. https://doi.org/10.1109/TIP.2007.901238
-
Downloads
-
How to Cite
Sahoo , A. K. ., & Rajavel, R. (2025). Enhanced Wavelet Block Shrinkage Technique For Mammogram Denoising Using K-Means Clustering And Neural Networks. International Journal of Basic and Applied Sciences, 14(4), 648-660. https://doi.org/10.14419/8psp9843
