Process, Performance, and Role of Friction Stir Welding for Joining Aluminium Alloys: A Comprehensive Review
-
https://doi.org/10.14419/xjekh456
Received date: July 5, 2025
Accepted date: August 1, 2025
Published date: August 12, 2025
-
Friction Stir Welding; Solid-State Coupling; Welding Parameters; Tool Design; Weld Defects; Mechanical Properties -
Abstract
It is a solid-state welding technique that bonds materials below their melting point, offering important benefits over fusion welding, such as superior mechanical properties and reduced distortion. This paper comprehensively reviews recent FSW research, detailing the core ideas behind the procedure and systematically analyzing critical parameters for welding (speed of rotation, traverse speed, Axial force), work piece materials, tool design and composition, and work piece dimensions. Defect formation in FSW joints and mitigation strategies are examined. The study further evaluates the advantages and disadvantages of FSW, discusses its current industrial applications, and explores prospects. By consolidating foundational and emerging research, this work provides a holistic overview of FSW as a transformative joining technology.
-
References
- Kutz, M. (2006). Materials and Mechanical Design. John Wiley & Sons.
- Norrish, J. (2006). Welding automation and robotics. In Advanced Welding Processes, 218–246. Elsevier. https://doi.org/10.1533/9781845691707.218
- Ng, M. C.-H., and S. N. Yahaya. (2017). Reviews on aluminum alloy series and its applications. Academic Journal of Scientific Research 5(12): 708–716. https://doi.org/10.15413/ajsr.2017.0724
- Joel, J., and M. Anthony Xavior. (2018). Aluminium alloy composites and its machinability studies; a review. Materials Today: Proceedings 5(5): 13556–13562. https://doi.org/10.1016/j.matpr.2018.02.351
- Kwee, I., W. De Waele, and K. Faes. (2019). Weldability of high-strength aluminium alloy EN AW-7475-T761 sheets for aerospace applications, using refill friction stir spot welding. Welding World 63(4): 1001–1011. https://doi.org/10.1007/s40194-019-00732-1
- Grimm, A., et al. (2015). Friction stir welding of light metals for industrial applications. Materials Today: Proceedings 2: S169–S178. https://doi.org/10.1016/j.matpr.2015.05.007
- Kou, S. (2002). Welding Metallurgy. Wiley. https://doi.org/10.1002/0471434027
- Mishra, R. S., and Z. Y. Ma. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports 50(1–2): 1–78. https://doi.org/10.1016/j.mser.2005.07.001
- Threadgill, P. L., A. J. Leonard, H. R. Shercliff, and P. J. Withers. (2009). Friction stir welding of aluminium alloys. International Materials Re-views 54(2): 49–93. https://doi.org/10.1179/174328009X411136
- Chen, Y., H. Li, X. Wang, H. Ding, and F. Zhang. (2019). A comparative investigation on conventional and stationary shoulder friction stir weld-ing of Al-7075 butt-lap structure. Metals 9(12): 1264. https://doi.org/10.3390/met9121264
- Vilaça, P., and W. Thomas. (2011). Friction stir welding technology. In Springer Series in Advanced Manufacturing, 85–124. https://doi.org/10.1007/8611_2011_56
- Aher, A. B., V. K. Pandey, and M. B. Shirke. (2024). Intelligent systems and applications in engineering: a review analysis of geometries, welding parameters, and materials used in friction stir welding.
- Khalaf, H. I., R. Al-Sabur, M. E. Abdullah, A. Kubit, and H. A. Derazkola. (2022). Effects of underwater friction stir welding heat generation on residual stress of AA6068-T6 aluminum alloy. Materials 15(6): 2223. https://doi.org/10.3390/ma15062223
- Subramanya, P., M. Amar, S. Arun, H. Mervin, and R. Shrikantha. (2018). Friction stir welding of aluminium matrix composites – a review. MATEC Web of Conferences 144: 03002. https://doi.org/10.1051/matecconf/201814403002
- Cabrini, M., et al. (2020). Stress corrosion cracking of friction stir-welded AA-2024 T3 alloy. Materials 13(11): 2610. https://doi.org/10.3390/ma13112610
- Prabhakar, D. A. P., et al. (2022). A comprehensive review of friction stir techniques in structural materials and alloys: challenges and trends. Jour-nal of Materials Research and Technology 20: 3025–3060. https://doi.org/10.1016/j.jmrt.2022.08.034
- Anand, A. K. A. (2013). Welding processes in marine applications: a review. 2(1).
- Cooper, D. R., and J. M. Allwood. (2014). The influence of deformation conditions in solid-state aluminium welding processes on the resulting weld strength. Journal of Materials Processing Technology 214(11): 2576–2592. https://doi.org/10.1016/j.jmatprotec.2014.04.018
- D. A., Q. G. W., L. G. Sanchez, G. de Salazar J. M., and C. Portal A. J. (2018). Welding by hot forging of two carbon steels for the manufacture of Spanish and Japanese weapons. Journal of Materials Science and Engineering 7(2). https://doi.org/10.4172/2169-0022.1000446
- Durdanović, M. B., M. M. Mijajlović, D. S. Milčić, and D. S. Stamenković. (2009). Heat generation during friction stir welding process. Tribology in Industry 31(1–2): 8–14.
- Verma, S., Kumar, V., Kumar, R., and Sidhu, R. S. (2022). Exploring the application domain of friction stir welding in aluminum and other alloys. Materials Today: Proceedings, 50, 1032–1042. https://doi.org/10.1016/j.matpr.2021.07.449.
- Kallee, S. W. (2010). Industrial applications of friction stir welding. In Friction Stir Welding (pp. 118–163). Elsevier. https://doi.org/10.1533/9781845697716.1.118.
- ESAB. (n.d.). Friction stir welding – the ESAB way.
- Sergeeva, E. V. (2013). Friction stir welding in aerospace industry (Review). Paton Welding Journal, 5, 56–60.
- Srubar, M. (2021). Application of friction stir welding in aircraft structures. Applied Friction Stir Welding in Aircraft Structures.
- Khan, K. Z., and Siddiquee, A. N. (n.d.). Friction stir welding: Dissimilar aluminium alloys.
- Bhardwaj, N., Narayanan, R. G., Dixit, U. S., and Hashmi, M. S. J. (2019). Recent developments in friction stir welding and resulting industrial practices. Advances in Materials and Processing Technologies, 5(3), 461–496. https://doi.org/10.1080/2374068X.2019.1631065.
- Kusuda, Y. (2013). Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle. Industrial Robot: An International Journal, 40(3), 208–212. https://doi.org/10.1108/01439911311309889.
- Singh, K., Singh, G., and Singh, H. (2023). The influence of holding time on the characteristics of friction stir welded dissimilar magnesium alloy joints during post welding heat treatment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Appli-cations, 237(1), 170–182. https://doi.org/10.1177/14644207221106576.
- Amini, A., Asadi, P., and Zolghadr, P. (2014). Friction stir welding applications in industry. In Advances in Friction-Stir Welding and Processing (pp. 671–722). Elsevier. https://doi.org/10.1533/9780857094551.671.
- Mahoney, W. H. B., Rhodes, C. G., Flintoff, J. G., and Mishra, R. A. S. M. W. (1998). Properties of friction-stir-welded 7075 T651 aluminum. Metallurgical and Materials Transactions A, 29, 1955–1964.
- Goloborodko, A., Ito, T., Yun, X., Motohashi, Y., and Itoh, G. (2004). Friction stir welding of a commercial 7075-T6 aluminum alloy: Grain re-finement, thermal stability and tensile properties. Materials Transactions, 45(8), 2503–2508. https://doi.org/10.2320/matertrans.45.2503.
- Shah, S. T. Sarang. (2012). Friction stir welding: Current state of the art and future prospects.
- dos Santos, J. F., et al. (2018). Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation. Acta Materialia, 148, 163–172. https://doi.org/10.1016/j.actamat.2018.01.020.
- Mendes, N., Neto, P., Simão, M. A., Loureiro, A., and Pires, J. N. (2016). A novel friction stir welding robotic platform: Welding polymeric materi-als. International Journal of Advanced Manufacturing Technology, 85(1–4), 37–46. https://doi.org/10.1007/s00170-014-6024-z.
- Albannai, A. (2020). Review the common defects in friction stir welding. International Journal of Scientific and Technology Research, 9(11), 318–329.
- Guo, J., Gougeon, P., and Chen, X.-G. (2012). Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B4C MMC and AA6063 alloy. Materials Science and Engineering A, 553, 149–156. https://doi.org/10.1016/j.msea.2012.06.004.
- Thomas, W. M., Johnson, K. I., and Wiesner, C. S. (2003). Friction stir welding – Recent developments in tool and process technologies. Advanced Engineering Materials, 5(7), 485–490. https://doi.org/10.1002/adem.200300355.
- Liu, H. J., Zhou, L., Huang, Y. X., and Liu, Q. W. (2010). Study of the key issues of friction stir welding of titanium alloy. Materials Science Fo-rum, 638–642, 1185–1190. https://doi.org/10.4028/www.scientific.net/MSF.638-642.1185.
- Strand, S. (2003). Joining plastics – can friction stir welding compete? In Proceedings: Electrical Insulation Conference and Electrical Manufactur-ing and Coil Winding Technology Conference (Cat. No.03CH37480), IEEE, 321–326. https://doi.org/10.1109/EICEMC.2003.1247904.
- Qasim, A. W., Doos, M., and Bashar (2012) Experimental study of friction stir welding of 6061-T6 aluminum pipe. International Journal of Me-chanical Engineering and Robotics Research, 1(3), 143–156.
- Campanelli, S., Casalino, G., Casavola, C., and Moramarco, V. (2013) Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy. Materials (Basel), 6(12), 5923–5941. https://doi.org/10.3390/ma6125923.
- Singh, K., Singh, G., and Singh, H. (2019) Investigation on the microstructure and mechanical properties of a dissimilar friction stir welded joint of magnesium alloys. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(12), 2444–2454. https://doi.org/10.1177/1464420719865292.
- Park, J. C., and Kim, S. J. (2010) The effect of traveling and rotation speeds on mechanical properties during friction stir welding of dissimilar Al alloys. Defect and Diffusion Forum, 297–301, 590–595. https://doi.org/10.4028/www.scientific.net/DDF.297-301.590.
- Park, S.-K., Hong, S.-T., Park, J.-H., Park, K.-Y., Kwon, Y.-J., and Son, H.-J. (2010) Effect of material locations on properties of friction stir weld-ing joints of dissimilar aluminium alloys. Science and Technology of Welding and Joining, 15(4), 331–336. https://doi.org/10.1179/136217110X12714217309696.
- Cakan, A., Ugurlu, M., and Kaygusuz, E. (2019) Effect of weld parameters on the microstructure and mechanical properties of dissimilar friction stir joints between pure copper and the aluminum alloy AA7075-T6. Materials Testing, 61(2), 142–148. https://doi.org/10.3139/120.111297.
- Wang, T., Feng, Z., and Wang, R. (2022) Study on friction stir welding and heat treatment of 7050 aluminum alloy. In Proceedings, 196–202. https://doi.org/10.1007/978-981-19-1309-9_20.
- Su, M., Qi, X., Xu, L., Feng, Q., Han, Y., and Zhao, L. (2022) Microstructural and mechanical analysis of 6063-T6 aluminum alloy joints bonded by friction stir welding. Journal of Materials Science, 57(31), 15078–15093. https://doi.org/10.1007/s10853-022-07541-w.
- Hunt, J. B., Mazzeo, B. A., Sorensen, C. D., and Hovanski, Y. (2022) A generalized method for in-process defect detection in friction stir welding. Journal of Manufacturing and Materials Processing, 6(4), 80. https://doi.org/10.3390/jmmp6040080.
- Singh, K., Singh, G., and Singh, H. (2021) Influence of post welding heat treatment on the microstructure and mechanical properties of friction stir welding joint of AZ31 Mg alloy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(5), 1375–1382. https://doi.org/10.1177/0954408921997626.
- Kaygusuz, E., Karaömerlioğlu, F., and Akıncı, S. (2023) A review of friction stir welding parameters, process and application fields. Turkish Jour-nal of Engineering, 7(4), 286–295. https://doi.org/10.31127/tuje.1107210.
- Gibson, B. T., et al. (2014) Friction stir welding: Process, automation, and control. Journal of Manufacturing Processes, 16(1), 56–73. https://doi.org/10.1016/j.jmapro.2013.04.002.
- He, X., Gu, F., and Ball, A. (2014) A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003.
- Elangovan, K., and Balasubramanian, V. (2008) Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Materials and Design, 29(2), 362–373. https://doi.org/10.1016/j.matdes.2007.01.030.
- Hassanifard, S., Ghiasvand, A., Hashemi, S. M., and Varvani-Farahani, A. (2022) The effect of the friction stir welding tool shape on tensile prop-erties of welded Al 6061-T6 joints. Materials Today Communications, 31, 103457. https://doi.org/10.1016/j.mtcomm.2022.103457.
- Liu, F. C., and Ma, Z. Y. (2008) Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy. Metallurgical and Materials Transactions A, 39(10), 2378–2388. https://doi.org/10.1007/s11661-008-9586-2.
- Zhao, Y.-H., Lin, S.-B., Qu, F.-X., and Wu, L. (2006) Influence of pin geometry on material flow in friction stir welding process. Materials Science and Technology, 22(1), 45–50. https://doi.org/10.1179/174328406X78424.
- Elangovan, K., and Balasubramanian, V. (2008) Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology, 200(1–3), 163–175. https://doi.org/10.1016/j.jmatprotec.2007.09.019.
- Scialpi, A., De Filippis, L. A. C., and Cavaliere, P. (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Materials and Design, 28(4), 1124–1129. https://doi.org/10.1016/j.matdes.2006.01.031.
- Muthu, M. F. X., and Jayabalan, V. (2016) Effect of pin profile and process parameters on microstructure and mechanical properties of friction stir welded Al–Cu joints. Transactions of Nonferrous Metals Society of China, 26(4), 984–993. https://doi.org/10.1016/S1003-6326(16)64195-X.
- Sorensen, B., and C. Nielsen. (n.d.). Exploring geometry effects for convex scrolled shoulder, step spiral probe FSW tools. Mater. Soc. Annu. Meet., 85–92.
- Azimzadegan, T., and S. Serajzadeh. (2010). An investigation into microstructures and mechanical properties of AA7075-T6 during friction stir welding at relatively high rotational speeds. Journal of Materials Engineering and Performance 19 (9): 1256–1263. https://doi.org/10.1007/s11665-010-9625-1.
- Dinaharan, I., and N. Murugan. (2012). Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites. Materials Science and Engineering A 543: 257–266. https://doi.org/10.1016/j.msea.2012.02.085.
- Heidarzadeh, A., H. Khodaverdizadeh, A. Mahmoudi, and E. Nazari. (2012). Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Materials and Design 37: 166–173. https://doi.org/10.1016/j.matdes.2011.12.022.
- Suresha, C. N., B. M. Rajaprakash, and S. Upadhya. (2011). A study of the effect of tool pin profiles on tensile strength of welded joints produced using friction stir welding process. Materials and Manufacturing Processes 26 (9): 1111–1116. https://doi.org/10.1080/10426914.2010.532527.
- Sorger, G., H. Wang, P. Vilaça, and T. G. Santos. (2017). FSW of aluminum AA5754 to steel DX54 with innovative overlap joint. Welding World 61 (2): 257–268. https://doi.org/10.1007/s40194-016-0412-y.
- Wei, Y., J. Li, J. Xiong, F. Huang, F. Zhang, and S. H. Raza. (2012). Joining aluminum to titanium alloy by friction stir lap welding with cutting pin. Materials Characterization 71: 1–5. https://doi.org/10.1016/j.matchar.2012.05.013.
- Liu, H., H. Zhang, Y. Huang, and L. Yu. (2010). Mechanical properties of underwater friction stir welded 2219 aluminum alloy. Transactions of Nonferrous Metals Society of China 20 (8): 1387–1391. https://doi.org/10.1016/S1003-6326(09)60309-5.
- Krishnan, M. M., J. Maniraj, R. Deepak, and K. Anganan. (2018). Prediction of optimum welding parameters for FSW of aluminium alloys AA6063 and A319 using RSM and ANN. Materials Today: Proceedings 5 (1): 716–723. https://doi.org/10.1016/j.matpr.2017.11.138.
- Shultz, E. F., E. G. Cole, C. B. Smith, M. R. Zinn, N. J. Ferrier, and F. E. Pfefferkorn. (2010). Effect of compliance and travel angle on friction stir welding with gaps. Journal of Manufacturing Science and Engineering 132 (4). https://doi.org/10.1115/1.4001581.
- Ahmed, M. M. Z., S. Ataya, M. M. El-Sayed Seleman, H. R. Ammar, and E. Ahmed. (2017). Friction stir welding of similar and dissimilar AA7075 and AA5083. Journal of Materials Processing Technology 242: 77–91. https://doi.org/10.1016/j.jmatprotec.2016.11.024.
- Gadakh, S., and C. Nayak. (2025). Multi-response optimization of process parameters for weld performances during underwater friction-stir weld-ing of dissimilar aluminum alloys AA6063-T6 and AA5083-H32. Journal of Adhesion Science and Technology 0 (0): 1–24. https://doi.org/10.1080/01694243.2025.2525995.
- Chitturi, V., S. Rao Pedapati, and M. Awang. (2019). A review on process parameters and their effects on dissimilar friction stir welding of alumin-ium and steel alloys. IOP Conference Series: Materials Science and Engineering 551 (1). https://doi.org/10.1088/1757-899X/551/1/012003.
-
Downloads
-
How to Cite
Aher , A. B. ., Pandey , V. K. ., & Shirke , M. . (2025). Process, Performance, and Role of Friction Stir Welding for Joining Aluminium Alloys: A Comprehensive Review. International Journal of Basic and Applied Sciences, 14(SI-2), 157-168. https://doi.org/10.14419/xjekh456
