Predictive Modeling of GH Blunting Patterns in Aging ‎and Exercise-Trained Individuals

  • Authors

    • Bevara Kondala Rao Department of Mathematics, GIET University, Gunupur, Rayagada 765022, Odisha, India and Department of Mathematics, SRI GCSR Degree College, Rajam 532127, Andhra Pradesh, India
    • Biplab Kumar Rath Department of Mathematics, SRI GCSR Degree College, Rajam 532127, Andhra Pradesh, India
    • A. Manickam School of Sciences, Division of Mathematics, SRM Institute of Science and Technology, Tiruchirappalli Campus, SRM Nagar, Trichy – Chennai Highway, Near Samayapuram, ‎Tiruchirappalli –621105. Tamilnadu, India
    https://doi.org/10.14419/51sv4776

    Received date: July 3, 2025

    Accepted date: August 2, 2025

    Published date: August 14, 2025

  • Reliability; GH; Failure Patterns; Normal Process; Quasiparametric Model
  • Abstract

    This paper proposes a novel semiparametric method using Gaussian process smoothing to estimate failure rates in engineered systems. Unlike traditional models, it provides accurate estimates based on historical data without assuming specific failure rate patterns. Experiments ‎using power system failure data demonstrate the method’s accuracy and effectiveness compared to other models. The approach applies ‎to various systems, including software reliability estimation. Additionally, mathematical results align well with the Gaussian process model, ‎successfully identifying the peak of growth hormone deficiency over time‎.

  • References

    1. Amin S.M.,(2010)” U.S. electrical grid gets less reliable”,IEEE Spectrum ,Jan. https://doi.org/10.1109/MSPEC.2011.5676396.
    2. Andersen P.K, Borgan O, Gill R.D, Keiding .N, (1995)Statistical Models based on Counting Processes, Springer.
    3. Bennett RM,Clark SR,Walczyk J(1998): A randomized double blind, placebo – controlled study of growth hormone in the treatment of fibromyalgia.Anj Med,104:227 – 231. https://doi.org/10.1016/S0002-9343(97)00351-3.
    4. Binnerts A, Wilson JHP, Lamberts SWJ. (1988) The effects of human growth hormone administration in elderly adults with recent weight loss. J Clin Endocrinol Metab 67:1312 – 1216. https://doi.org/10.1210/jcem-67-6-1312.
    5. Borst SE, Millard WJ, Lowenthal DT. (1994) Growth hormone, exercise, and aging; the future of therapy for the frail elderly. J Am Geriatr Soc. 42:528-535. https://doi.org/10.1111/j.1532-5415.1994.tb04976.x.
    6. Corpas E, Harman S & Blackman M. (1993) Human growth hormone and human aging. Endocrine Reviews 14 20-38. https://doi.org/10.1210/edrv-14-1-20.
    7. Florini JR.(1987) Hormonal control of muscle growth. Muscle Nerve. 10: 577-598. https://doi.org/10.1002/mus.880100702.
    8. Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ. (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol. 64: 1038-104 4. https://doi.org/10.1152/jappl.1988.64.3.1038.
    9. Federal Smart (2010) Grid Task Force, Smart grid basics available: http://www.smartgrid.gov/basics.
    10. Finkelstein J, Roffwarg H, Boyar P, Kream J, Hellman L. (1972) Age-related changes in the twenty-four hour spontaneous secretion of growth hormone in normal individuals. JClin Endocrinol Metab. 35:665-670. https://doi.org/10.1210/jcem-35-5-665.
    11. Hagberg JM, Seals DR, Yerg JE, et al. (1988) Metabolic responses to exercise in young and old athletes and sedentary men. J Appl Physiol. 65:900-908. https://doi.org/10.1152/jappl.1988.65.2.900.
    12. Luger A, Watschinger B , Deuster P, Svoboda T, Clodi M, Chrousos GP. (1992) Plasma growth hormone and prolactin responses to graded levels of acute exercise and to a lactate infusion. Neuroendocrinology. 56:112-117. https://doi.org/10.1159/000126912.
    13. Jorgensen JO, Pedersen SA, Thuesen L, et al. (1989) Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet 1:1221-1225. https://doi.org/10.1016/S0140-6736(89)92328-3.
    14. Jorge Angel Ascacio-Martinez and Hugo Alberto Barrera-Saldana (2012)“ Genetic Engineering basics, new applications and responsibilities”, ISBN 978-953-307-790-1.
    15. Kalaiselvi . R and Manickam, A(2021) A Mathematical Skew-Logistic Model for Circadian Gene Expression Regulates Pulsatile Gonadotropin-Releasing Hormone (Gnrh) Secretory Patterns In The Hypothalamic Gnrh-Secreting Gt1-7 Cell Line” South East Asian Journal of Mathematics and Mathematical Sciences, Volume.17, ISSN:0972-7752(P) 2582-0850(E).
    16. Lakshmi.S and Manickam.A.(2014) “Mathematical model for finding the maximum value of growth hormone (GH) deficiency in patients with fibromyalgia by using Gaussian process”. IOSR Journal of Engineering (IOSRJEN). ISSN(e):2250-3021, ISSN(p):2278-8719. Vol.04, Issue 04 (April), ⃦V6⃦. Pp 08-15. https://doi.org/10.9790/3021-04460815.
    17. Little wood B and Verrall J.L.,(1974) “A Bayesian Reliability Model with a Stochastically Monotone failure rate”, IEEE Transactions on Reliability, vol, R-23, No: 2, pp. 108 – 114. https://doi.org/10.1109/TR.1974.5215217.
    18. Leema Rose. A and Manickam, A.(2021), “A Mathematical model for Enduring effect of childhood maltreatment on cortisol and heart rate responses to stress using Log-Normal Distributions” South East Asian Journal of Mathematics and Mathematical Sciences, Volume. 17 . ISSN:0972-7752(P) 2582-0850(E).
    19. A. Manickam*, A. Benevatho Jaison, D. Lakshmi, Ram Singh, and C. T. Dora Pravina,(2024) A mathematical study of the adrenocorticotropic hormone as a regulator of human gene expression in adrenal glands. Computational and Mathematical Biophysics 2024; https://doi.org/10.1515/cmb-2023-0122.
    20. A. Manickam, M. Kavitha, A. Benevatho Jaison, Arvind Kumar Singh (2024) A fractional-order mathematical model of Banana Xanthomonas Wilt disease using Caputo derivatives. Volume 5 issue 1 pp 136-156. Contemporary Mathematics ISSN: 2705-1064. https://doi.org/10.37256/cm.5120242479.
    21. A. Manickam Pushpendra Kumar K. Dasunaidu V. Govindaraj and Dheeraj Kumar Joshi (2022) A stochastic SIR model for analysis of testosterone 7 suppression of CRH-stimulated cortisol in men. International Journal of Modeling, Simulation, and Scientific Computing 2250021 (7 pages) https://doi.org/10.1142/S1793962322500210.
    22. A.Manickam R.L.Naidu and S.Indrakala(2020) “ A Study on Weibull-G Exponential Distribution Model for Secretion of Gn rh In Beef Cows”Advances in Mathematics: Scientific Journal 8 no.9 7477–7482 ISSN 1857-8365 printed version ISSN 1857-8438 electronic version. https://doi.org/10.37418/amsj.9.9.94.
    23. Pyka G, Wiswell RA, Marcus R. (1992) Age-dependent effect of resistance exercise on growth hormone secretion in people. J clin Endocrinol Metab. 75: 404-407. (223) https://doi.org/10.1210/jcem.75.2.1639942.
    24. Rasmussen C.E and Williams C.K.I,(2006) Gaussian Processes for Machine Learning,MIT Press. http.s://doi.org/10.7551/mitpress/3206.001.0001
    25. Rudman D. (1985) Growth hormone, body composition and aging. J Am Geriatr Soc. 33:800-807. https://doi.org/10.1111/j.1532-5415.1985.tb04195.x.
    26. Zadik Z, Chalew SA, McCarter RJ, Meistas M, Kowarski AA, (1985) The influence of age on the 24-hour integrated concentration of growth hormone in normal individuals J.Clin Endocrinol Metab. 60:513-516. https://doi.org/10.1210/jcem-60-3-513.
  • Downloads

  • How to Cite

    Rao , B. K. ., Rath , B. K. ., & Manickam , A. . (2025). Predictive Modeling of GH Blunting Patterns in Aging ‎and Exercise-Trained Individuals. International Journal of Basic and Applied Sciences, 14(4), 425-429. https://doi.org/10.14419/51sv4776